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5.1 Coalitions and Characteristic Functions
Problems



Coalitions and Characteristic Functions

 We consider a game in which the players may choose to

cooperate by forming coalitions.

— There are n > 1 players numbered 1, 2,..., n.
— The set of all the players: N={1,2,..., n}

— A coalition is any subset S C N, or numbered collection of the players.

— Since there are 2" possible subsets of N, there are 2" possible
coalitions.

* Coalitions form in order to benefit every member of the
coalition so that all members might receive more than they

could individually on their own.



Coalitions and Characteristic Functions

In this section we try to determine a fair allocation of the
benefits of cooperation among the players to each member of
a coalition.

— A major problem in cooperative game theory is to precisely define
what fair means.

First we need to quantify the benefits of a coalition through
the use of a real-valued function, called the characteristic
function.

— The characteristic function of a coalition S C N is the largest
guaranteed payoff to the coalition.



Definition 5.1.1

e Definition 5.1.1

— Let 2V denote the set of all possible coalitions for the players N. If S = {i}
is a coalition containing the single member i, we simply denote S by i.

Any function » - 2N . R satisfying
v(@) =0 and v(N) > Zu(vf)
=1

is a characteristic function (of an n-person cooperative game).



Definition 5.1.1 (conta)

In other words, the only condition placed on a characteristic
function is that the benefit of the empty coalition be zero and
the benefit of the grand coalition N, consisting of all the
players, be at least the sum of the benefits of the individual
players if no coalitions form.

— This means that every one pulling together should do better than each
player on his or her own.

— With that much flexibility, games may have more than one
characteristic function.



EXAMPLE 5.1

e Let's start with some simple characteristic function examples.

1. Suppose that there is a factory with n workers each doing the same task. If
each worker earns the same amount b dollars, then we can take the characteristic
function to be v(S) = b|S|, where | S| is the number of workers in S. Clearly,
v(0) = b|0] =0, and v(N) = b|N| =bn =15 Z:’:I v(2).
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EXAMPLE 5.1 (conta)

2. Suppose that the owner of a car, labeled player 1, offers it for sale for
$M. There are two customers interested in the car. Customer (', labeled player
2, values the car at ¢ and customer [, labeled player 3, values it at d. Assume
that the price is nonnegotiable. This means that if M > ¢ and M > d, then
no deal will be made. We will assume then that M < min{c,d}, and, for
definiteness we may assume M < ¢ < d. The set of possible coalitions are
2N = {123, 12, 13, 23, 1, 2, 3, 0}. For simplicity we are dropping the
braces in the notation for any individual coalition.

[t requires a seller and a buyer to reach a deal. Therefore, we may define
the characteristic function as follows:

v(123) =d, v(1)=M, v(0) =0
v(13) =d, v(12) =¢, v(23) =0,
2] =03} =1,
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EXAMPLE 5.1 (conta)

Why? Well, ©(123) = d because the car will be sold for d, v(1) = M because
the car 1s worth A to player 1, v(13) = d because player 1 will sell the car
to player 3 for d > M, v(12) = ¢ because the car will be sold to player 2
for ¢ > M, and so on. The reader can easily check that v is a characteristic
function.

3. A customer wants to buy a bolt and a nut for the bolt. There are three
players but player 1 owns the bolt and players 2 and 3 each own a nut. A bolt
together with a nut is worth 5. We could define a characteristic function for
this game as

v(123) =5, v(12) = v(13) =5, v(l)=v(2) =v(3) =0, and v(0)=0.

In contrast to the car problem v(1) = 0 because a bolt without a nut is worthless
to player I.
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EXAMPLE 5.1 (conta)

4. A small research drug company, labeled 1, has developed a drug. It does
not have the resources to get FDA (Food and Drug Administration) approval
or to market the drug, so it considers selling the rights to the drug to a big drug
company. Drug companies 2 and 3 are interested in buying the rights but only
if both companies are involved in order to spread the risks. Suppose that the
research drug company wants $1 billion, but will take $1 million if only one
of the two big drug companies are involved. The profit to a participating drug
company 2 or 3 is $5 billion, which they split. Here is a possible characteristic
function with units in billions:

v(l) =v(2) =2(3) = 0,v(12) = 0.1,v(13) = 0.1,v(23) = 0,v(123) = 5,

because any coalition which doesn’t include player 1 will be worth nothing.
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EXAMPLE 5.1 (conta)

5. A simple game is one in which v(S) = 1 or ¢v(5) = 0 for all coalitions
S. A coalition with v(S) = 1 is called a winning coalition and one with
v(S) = 0is a losing coalition. For example, if we take v(S) = 1if [S| > n/2
and v(S) = 0 otherwise, we have a simple game that is a model of majority
voting. If a coalition contains more than half of the players, it has the majority
of votes and is a winning coalition.

6. In any bimatrix (A, B) nonzero sum game we may obtain a characteristic
function by taking v(1) = value(A), v(2) = value(BT), and v(12) =sum of
largest payoff pair in (A, B). Checking that this is a characteristic function is
skipped. The next example works one out.
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EXAMPLE 5.2

* In this example we will construct a characteristic function for
a version of the prisoner's dilemma game in which we
assumed that there was no cooperation. Now we will assume

that the players may cooperate and negotiate.

* Prisoner's dilemma bimatrix

(8,8)  (0.10)
(10,0) (2,2)

— Here N ={1, 2} and the possible coalitions are 2N = {0, 1.2.12}



EXAM P LE 5 . 2 (cont’d)

— If the players do not form a coalition, they are playing the nonzero
sum noncooperative game. Each player can guarantee only that they
receive their safety level.

For player| A = U;] E)]] value(A) = 2

For player Il BT = []*’-:’] ﬂ value(BT) = 2

— Thus we could define v(l) = v(2) = 2 as the characteristic function for
single member coalitions.



EXAMPLE 5.2 (conta)

e |If the players cooperate and form the coalition S = {12}, the

Figure 5.1, which is generated by Maple, shows what is going
on.

— The parallelogram is the boundary of the set of all possible payoffs to
the two players when they use all possible mixed strategies.

— You can see that without cooperation the profits are each at the lower
left vertex point (2, 2).

— Any point in the parallelogram is attainable with some suitable
selection of mixed strategies if the players cooperate. Consequently,
the maximum benefit to cooperation for both players results in the
payoff pair at vertex point (8,8), and so we set v(12) = 16 as the
maximum sum of the benefits awarded to each player.



EXAMPLE 5.2 (contq)

cooperation

Payofts with and without

o

The Pareto-optimal boundary

(8, 8) is Pareto—optimal]
of the payoff set

10.0

7.5

L

2.9

0.0

..._.__rr____nw._____.__.m__ _n_u.M

od o=

payoff to ll

payo'f to |

Figure 5.1 Payolf to player | versus payoll to plaver 1.

16

Game Theory, Ch5

Chih-Wen Chang @ NCKU



EXAMPLE 5.3

Here is a much more complicated but systematic way to
create a characteristic function given any n-person,
noncooperative, nonzero sum game.

— The idea is to create a two-person zero sum game in which any given
coalition is played against a pure opposing coalition consisting of
everybody else. The two players are the coalition S versus all the other

players, which is also a coalition N - S.

— The characteristic function will be the value of the game associated
with each coalition S.



EXAM P LE 5 . 3 (cont’d)

 Suppose that we have a three-player nonzero sum game with
the following matrices:

|'
|E plays A player| 2
A B
pluycrl Al (1,1,0) (4.-2,2)
Bl (1,2,-1) (3.1,-1)

3| plays B player|2
A B
player | | Al (—-3.1,2) (0,1,1)
B|(20,-1) (2,1.-1)
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EXAM P LE 5 . 3 (cont’d)

* We need to consider all of the zero sum games which would
consist of the two-player coalitions versus each player, and
the converse, which will switch the roles from maximizer to
minimizer and vice versa.

— For example, one such possible game is S ={12} versus N — S =3, in
which player S = {12} is the row player and player 3 is the column

player. We also have to consider the game 3 versus {12}, in which
player 3 is the row player and coalition {12} is the column player.



e 1.Play S={12}versus {3}.

EXAM P LE 5 . 3 (cont’d)

— players 1 and 2 team up against player 3.

— In the game {12} versus {3}

12 | versus | 3 player|3
A B
player\£ AA 2 -2
AB 2 |
BA 3 2
BB 4 3

* For example, if 1 plays A and 2 plays A and 3 plays B, the payoffs in the nonzero sum

game are (-3,1, 2) and so the payoff to player 12 is -3 + 1 = -2, the sum of the

payoff to player 1 and player 2, which is our coalition.
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EXAM P LE 5 . 3 (cont’d)

* Now we calculate the value of the zero sum two-person game with this matrix to
get the value(12 vs. 3) = 3 and we write v(12) = 3.

— In the game {3} versus {12}

3| versus ? 12
AA AB BA BB
3 A 0o -2 -1 -1
B 2 1 -1 -1

* We now want to know the maximum possible payoff to player 3 assuming that the
coalition {12} is actively working against player 3.

* The value of this game is -1. Consequently, in the game {3} versus {12} we would get
v(3) =-1.

* Observe that the game matrix for 3 versus 12 is not the transpose of the game
matrix for 12 versus 3.
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EXAM P LE 5 . 3 (cont’d)

e 2.Play S ={13}versus {2}.
— In the game {13} versus {2}

m versus |2 ] | player 2
A B

player| 13 AA 1 6
AB -1 1

BA 0 2

BB 1 1

* We see that the value of this game is 1 so that v(13) = 1.
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EXAM P LE 5 . 3 (cont’d)

— In the game {2} versus {13}

?‘ versus |H 13
AA AB BA BB
2 A ] 1 2 0
B -2 1 ] 1

* The value of this game is 1/4, and so v(2) = 1/4.

e we summarize that the characteristic function for this three-
person game is

—_—

o(D)=1, v(2) ==, v(3) = —1,

1;
v(12) = 3, v(13) = 1, v(23) = 1,
v(123) = 4, v(0) = 0.
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EXAM P LE 5 . 3 (cont’d)

 The value is obtained from the pure strategies: 3 plays A, 1
plays A, and 2 plays B with payoffs (4, -2,2). Summing these
payoffs for all the players gives v(123) = 4.

— This is the most the players can get if they form a grand coalition, and
they can get this only if all the players cooperate.



EXAM P LE 5 . 3 (cont’d)

 The central question in cooperative game theory is how to
allocate the reward of 4 to the three players. In this example,
player 2 contributes a payoff of -2 to the grand coalition, so
should player 2 get an equal share of the 4? On the other
hand, the 4 can only be obtained if player 2 agrees to play
strategy B, so player 2 does have to be induced to do this.
What would be a fair allocation?



The General Formula for The Characteristic

Function

Remark.

— There is a general formula for the characteristic function obtained by
converting an n-person nonzero sum game to a cooperative game.
Given any coalition S C N, the characteristic function is

XCXsYEYN_ YEYN_5 XEXg

v(S) = max min ZE;-(X.}') = min max ZE,—['X‘ Y).
; IS €S

X g isthe set of mixed strategies for the coalition S

Y~ _ g is the set of mixed strategies for the coalition N - S

E;(X,Y)is the expected payoff to player 7 € S

> ics Ei(X.Y) is the total payoff for each playerin ; < § and represents the
payoff to the coalition S.



Remarks on Characteristic Functions

e 1. Averydesirable property of a characteristic function is
that it satisfy

v(SUT) > v(S)+v(T) forall S, TC N, SNT =10

This is called superadditivity.

— |t says that the benefits of the larger consolidated coalition S U T of
the two separate coalitions S. T must be at least the total benefits of
the individual coalitions Sand T.

— Many results on cooperative games do not need superadditivity, but
we will take it as an axiom that our characteristic functions in all that
follows must be superadditive.

— With the assumption of superadditivity, the players have the incentive
to form and join the grand coalition N.



Remarks on Characteristic Functions (contq)

« 2. Agameisinessential if and only if v(NV) = >_i_, v(i). An
essential game therefore is one with v(N) > 327, v(i) |

e 3. Anygame with wsu7) = u(s) o) for
all s;7c N, snT=10,is called an additive game. A game is
inessential if and only if it is additive.

— The word inessential implies that these games are not important.



Remarks on Characteristic Functions (contq)

* To see why a characteristic function for an inessential game
must be additive, we simply write down the definitions. In fact
let s,TcN.SNT =0.

— Then

v(N) = Z-ﬂ(i) (inessential game)
i=1
= Z (i) + Z?!(i) i Z v(1)
i€S i€T i€ N—(SUT)
<v(S)+v(T)4+v(N-(SUT)) (superadditivity)
<v(SUT)+o(N—-(SuT)) (superadditivity)
< v(N) (superadditivity again).

— Since we now have equality throughout
v(S)+v(T)+v(N=(SUT)) =v(SUT)+v(N-(SUT)),

andsov(S)+v(T)=v(SUT)

\ 4T
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Definition 5.1.2

 We need a basic definition regarding the allocation of rewards
to each player. Recall that v(N) represents the reward
available if all players cooperate.

e Definition 5.1.2

Let x; be the share of the value of v(N) received by player i -
L 2 A VECHOF B = (B0 itk r,) is an imputation f
e 1; >~ v(1) (individual rationality)

r

° T xr; = v(N) (group rationality)
A ;
i=1

The imputation ¥ is also called a payoff vector or an allocation, and we will use
these words interchangeably.
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Definition 5.1.2 (onta)

Remarks

1.

It is possible for x; to be a negative number! That allows us to model
coalition members that do not benefit and may be a detriment to a
coalition.

Individual rationality means that the share received by player i
should be at least what he could get on his own. Each player must be
individually rational.

Group rationality means that the total rewards allocated to each
individual in the grand coalition should equal the total rewards
available by cooperation.



Definition 5.1.2 (ont)

Any inessential game, »(N) = Y (i), has one and only one
imputation and itis 7 = (v(1)...., v(n)).

These games are uninteresting because there is no incentive for any
of the players to form any sort of coalition and there is no wiggle
room in finding a better allocation.



(0,1) Normalization

 We begin by presenting a way to transform a given
characteristic function for a cooperative game to one which is
frequently easier to work with. It is called the (0,1)
normalization of the original game.

— The normalized game will result in a characteristic function with v(i) =
0, v(N) = 1.

— In addition, any two games may be compared by comparing their
normalized characteristic functions. If they are the same, the two
games are said to be strategically equivalent.



Lemma 5.1.3

* Lemma5.1.3

Any essential game with characteristic function v has a (0,1) nor-
malization with characteristic function v, that is, given the characteristic function
v(-) there is a unique characteristic function v'(-) that satisfies v'(N) = 1,0'(i) =
0,1 <i<n,andv'(S)=cv(S)+ ) . ca;for some constants ¢ > 0,a,,...,a,.
The constants are given by

eSS

1
c= and a; = —cv(i), i=1,2,...,n.

v(N) = 31, v(i)

Proof. Consider the n + 1 system of equations for constants ¢, a;,1 < 1 < n,
given by

cv(i)4+a; =0, 1<i<n,

n
cv(N) + Z a; = 1.

i=1
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Lemma 5.1.3 (contq)

If we add up the first n equations, we get ¢ > v(i)+ > a; = 0. Subtracting this from
the second equation results in

clv(N) — Z v(i)] =1,

and we can solve for ¢ > 0 because the game is essential (so v(V) > > v(i)). Now
that we have c, we set a; = —c v(i). Solving this system, we get

= : > () a; = — v(?) _
u(N) =3 o(@) Cu(N) = 3 ()

Then, for any coalition S C N define the characteristic function

C

v'(S)=cv(S)+ ) a; forall SCN.
1ES

The equations we started with give immediately that v/(N) = 1 and v'(i) = 0,1 =
1.2,...,n. ]
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How Does Normalizing Affect Imputations?

e If we have an imputation for an unnormalized game, what
does it become for the normalized game? Conversely, if we
have an imputation for the normalized game, how do we get

the imputation for the original game?
— The set of imputations for the original game is

T

X ={& = (a1, 20) [ 2 > 0(i), Y@ = v(N)}.

=1

— For the normalized game, indeed, for any game with v(i) =0, v(N) =1,

the set of all possible imputations is given by

By

r.
X' ={&=(,. . ,20) 2 > U,ZI? = 1}.
1=1



How Does Normalizing Affect Imputations? (conra)

- If & = (2),...,2)) € X’ isanimputation for v'then the
imputation for v becomes

— J,o— Ay
r=(r1,...,2n) € X where z; = M,

1
= _ and a; = —cuv(i), 1=1,2,..., n.
W(N) = > (i) ?- (1) .

(z1.....x,) € X isanimputation for the original

— Conversely, if _
game, then ¥ — (z}.....2},) isthe imputation for the normalized

.
_ !

= (77,

game, where 2z, = cx; +a;,i=1,2
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EXAMPLE 5.4

In the three—person nonzero sum game considered above we found the (unnor-

malized) characteristic function to be

1

v(l) =1, v(2) = 7 v(3) =—1
v(12) =3, v(13) =1, v(23) =1
v(123) = 4.
To normalize this game we compute
1 1 4
c= 3 = - = —. and a; = ——v(i)
v(N) =2 iqv(d) d-5 D 15
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EXAMPLE 5.4 (conta)

So
4 1 d 4
a, = —.a2 = ——. and a3 = —.
AT T
Then the normalized characteristic function by v’ is calculated as
4
v'(i) = —v()+a; =0
15
4 7
v'(12) = —v(12)+a+ar = —
v (12) I-SI() ay+az = -
4 4
(3 (]3) = E i"(]?l) —+ a1 -+ az = E
4 | 7
v'(23) = —v(23)+ay+az=—
15 15
4 |
v'(123) = — v(123) +ay +as +az = 1.

15
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Definition 5.1.4

* Let X denote the set of imputations 7. We look for an

allocation ¥ € X as a solution to the game.

e Definition5.1.4

The reasonable allocation set of a cooperative game is a set of
imputations R C X given by

R={7e X |z; <max{v(T)—-v(T —-49)}.i=1,2,...,n},

Tell!

where T1" is the set of all coalitions for which player i is a member. So, if T € II',
theni € T'C N, and T — i denotes the coalition T" without the player i.
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Definition 5.1.4 (conta)

— In other words, the reasonable set is the set of imputations so that the
amount allocated to each player is no greater than the maximum
benefit that the player brings to any coalition of which the player is a
member

— The difference v(T) - v(T - i) is the measure of the rewards for coalition
T due to player .

— The reasonable set gives us a first way to reduce the size of X and try
to focus in on a solution.

* If the reasonable set has only one element, which is
extremely unlikely for most games, then that is our solution.



Definition 5.1.5

* Ifthere are many elements in R, we need to cut it down
further. In fact, we need to cut it down to the core
imputations, or even further. Here is the definition.

e Definition 5.1.5

Let S C N be a coalition and let ¥ € X. The excess of coalition
S C N forimputation ¥ € R is defined by
e(S,z) = v(5) Z.;'.,;.
i€S
The core of the game is
C0) ={Fe X |e(S.7F)<0.VSCN}={FeX|v(S)<) x,.VSCN}

e S
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DEfinition 515 (cont’d)

The =-core, for —oc < = < +2oC. s
Cle)={7€ X |e(S,7) <. VSCN,S#N,S#0D}

Let ' € (—oc,oc) be the smallest ¢ for which C(c) # ). The least core , labeled
X't is Cieh). Itis possible for =* to be positive, negative, or zero.

— The grand coalition is excluded in the requirements for('(¢) because if
N were an eligible coalition, then ¢(N,7) =0 < =, and it would force=
to be nonnegative. That would put too strict a requirement on < in
order forC(s) to be nonempty.
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Definition 5.1.5 (conta)

— We will use the notation that for a given imputation ¥ = (x,,....r,) and
a given coalition S ¢ N

T(S) = Z T,

icS

the total amount allocated to coalition S.



Definition 5.1.5 (conta)

Remark

1.

The excess function ¢(S. ) is a measure of dissatisfaction
of a particular coalition S with the allocation 7. Consequently, 7 is in

r

the core if all coalitions are satisfied with . If the core has only one
allocation, that is our solution.

If e(.S. ) > 0, this would say that the maximum possible benefits of joining the
coalition § are greater than the total allocation to the members of § using the
imputation 7. But then the members of S would not be very happy with; and
would want to change to a better allocation.

In that sense, if © € C'(0) , then ¢(S,x) < U for every coalition §, and there
would be no incentive for any coalition to try to use a different imputation. An
imputation is in the core of a game if it is acceptable to all coalitions.



Definition 5.1.5 (conta)

Likewise, if ©* € ('(¢), then the measure of dissatisfaction of a
coalition with 7 is limited to <. he size of £ determines the measure
of dissatisfaction because ¢(5.7) <

It is possible for the core of the game C'(0) to be empty, but there

will always be some = € (—oc,0) sothat C'(¢) # 0. The least core
uses the smallest such € . If the smallest C'(0) =0,

It should be clear, since C'(¢) is just a set of inequalities, that as ¢
increases, ('(=) gets bigger, and as £ decreases, ('(=) gets smaller.

The idea is that we should shrink (or expand if necessary)C' (<) by adjusting £ until
we get one and only one imputation in it, if possible.

‘ s <&l = Clg) C C(g)

f]J



Definition 5.1.5 (conta)

We will see shortly that C'(0) ¢ R every allocation in the core is
always in the reasonable set.

The definition of solution for a cooperative game we are going to use
in this section is that an imputation should be a fair allocation if it is
the allocation which minimizes the maximum dissatisfaction for all
coalitions.



EXAMPLE 5.5

Let’s give an example of a calculation of ('(0). Take the three-person game
N = {1,2,3}, with characteristic function

v(l) =1, v(2) =2, v(3) =3,
0(23) = 6,v(13) = 5,0(12) = 4,v(0) = 0, v(N) = 8.

The excess functions for a given imputation 7 = (1, 22.23) € C(0) must
satisfy

e(1,7)=1—21 <0, e(2,7) =2 -2, <0, e(3,7) =3 —23 <0
e(12,7) =4 —x; — 12 <0, e(13,7) =5 —x; — 23 <0,
6(23?) — 06— TIo — I3 S 0.

and we must have x; + r2 + r3 = 8. These inequalities imply that z; >
1,290 > 2,253 > 3, and

ry+axy >4, 1 +x3> 0,004+ 23 > 6.
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EXAMPLE 5.5 (conta)

If we use some algebra and the substitution 3 = 8 — x7 — 2 to solve these
inequalities, we see that

C0) ={(x1, 22,8 =21 —22) |1 <2y £2,2< 25 <3,4 <21 + 79 <5},

If we plot this region in the (x;.x5) plane, we get the following Maple—
generated diagram

C(0)

Chih-Wen Chang @ NCKU Game Theory, Ch5

49



EXAMPLE 5.5 (conta)

In a similar way it can be shown that the smallest £ for which C'(z) # ()
is ¢ = ¢! = —L. In fact, the least core is the single imputation C' ( %)

{(3.8,4)}. Indccd the imputations in C'() must satisfy e(.9, ) < & for all

coalitions S € N. Written out, these inequalities become

l—e<21 <246, 2—e< 1< 3+¢,
4 —e<x14+a9<5+4+¢,

where we have eliminated r3 = 8 —x; — x2. Adding the inequalities involving
only 1, 1o weseethatd —e < 1y +x2 < 5+ 2¢, which implies that e > —%.

You can check that this i 15 the smallest e for which C'(g) # (0. Withe = — %,tit
follows that xy + 29 = =7 and ) <3, < 3.Then,

0 + 5 0

- —T — —x2 | =0,

3 1 3 2
which implies that z; = % To = bccause two nonnegamve terms adding to

zero must each be zero. This is one techmque for finding ! and C'(¢!).
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Lemma 5.1.6

Lemma 5.1.6

The core must be a subset of the reasonable set €(0) ¢ R.

Proof. We may assume the game is in normalized form because we can always
transform it to one that is and then work with that one. So v(N) = 1,v(i) = 0,1 =
I...., n. Let ¥ € C(0). If 7 ¢ R there is some player j such that

r; > max v(l) —o(T — j).
J ey (1) ( J)
This means that for every 7" C N with j € T, z; > v(T') — v(T — j), and so the
amount allocated to player j is larger than the amount of her benefit to any coalition.
Take 7' = N. Then

r; > 0(N)—o(N —j)=1—v(N - j).

But then, (N — j) > 1 —x; = Z;‘;’_;‘ x;, and so ¢(N — j,7) > 0, which means

F¢ o). O
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EXAMPLE 5.6

In this example we will normalize the given characteristic
function, find the reasonable set, and find the core of the
game. Finally, we will find the least core and then find the

unnormalized imputation.
- We have the characteristic function in the three—player game from Example
5.3:

|
v(l) = 1,0(2) = 1 0(3) = —1,0(12) = 3,0(13) = 1.0(23) = 1,0(123) = 4.
This is an essential game that we normalized in Example 5.4 to obtain the

characteristic function that we will use:

. _ ) 7 4 7
v(i) =0, v(123) =1, v(12) = —, v(13) = —, v(23) = —
' ' 15 ' 15 ' 15
The normalization constants are ¢ - ﬁ and a; = - TJ'—J s = - TI. and

3 ]—l: .

-
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EXAM P LE 5 . 6 (cont’d)

 The set of imputations is

= {Tr = (11,12, 13) |If_{]ZJ,:

— The reasonable set is easy to find:

R={7= ro.x3) € X | oy < max{v(T) —o(T —1i)}.1=1,2,3}
Tell |
) 11 7 -
= {(.‘I?],;L‘le — a ) | ry = TF) To < — L..J 'i_,.j <x)+ax < 1}

— For example, let’s consider

rp < max o{l)— vl —1).
r1 < max v(T) al )
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EXAMPLE 5.6 (contq)

— The coalitions containing player 1 are {1.12,13.123}, so we are calculating
the maximum of

v(l) —v(0) =0, v(12) —v(2) = i v(13) —v(3) = i
15 15
‘ R
v(123) —v(23) =1 E=15

— Hence 0 < z; < {%. Similarly, 0 < r, < 1+. We could also show 0 < z3 <

, 15
ba)

15 - but this isn’t good enough because we can’tignore r; + .y + 3 = 1. That

1s where we use
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EXAM P LE 5 . 6 (cont’d)

— Another benefit of replacing x5 is that now we can draw the reasonable set in
(1. x2) space. Figure 5.2 below is a plot of R.

1.0 5

0.8

0.6 |_ Reasonable set

x2

0.2 0 0.2 04 \ 0.6 08 1.0
. xl

-0.24

Figure 5.2 The set of reasonable imputations.
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EXAM P LE 5 . 6 (cont’d)

— Figure 5.2 was generated with the simple Maple commands

> with(plots) :with(plottools):
> inequal( { x<=8/15,y<=11/15,x+y >=7/15, x+y<=1,x>=0,y>=0},
x=-.25..1, y=-.25..1,
optionsfeasible=(color=red),
optionsopen=(color=blue,thickness=2),
optionsclosed=(color=gray, thickness=2),
optionsexcluded=(color=white),labels=[‘x[1]‘, ‘x{2]‘] );
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EXAM P LE 5 . 6 (cont’d)

 We would like to find next the point (or points) in the
reasonable set which is acceptable to all coalitions.

— That is the core of the game:
C0)={Fe X |e(S.z) <0, VST N,S#N,S#0}

Ll

| ' 11 8
{;T'l 20‘;11220.1%—371 —:172‘20.*]—_4—.1'2 E(}.—'l—r‘f‘iﬁ <U
X «) )

5
T, + x9 < 1},

Unfortunately, this gives us exactly the same set as the reasonable set, C'(0) = R
in this example, and that is too big a set.
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Chih-Wen

EXAMPLE 5.6 (contq)

Now let’s calculate the e-core for any € € (—00,00). The e-core is, by
definition

Cls) ={zF€ X |e(S,&) <= VSCN,S#N,S #0)
:{Il 20,1‘2)’0 -T——.T] — I9 <_:E’—]|—é + I ng_% + I EE-

715

—x1 <ég,—xp <e,—1+x; + 12 < £}

We have used the fact that 1 + x2 + 23 = 1 to substitute x5 = 1 — 2, — 9.
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EXAMPLE 5.6 (contq)

— By working with the inequalities in C'(¢), we can find the least core X . We
verify that the smallest € so that C'(g) # Qis ! = _TJE* The procedure is to
add the inequality for 5 with the one for z; and then use the first inequality:

H + S 4 19+ by <2
— — Iro — — N =—= ——— T I [
15 "2 15 "7 15 P TE =
but x| + x9 > 115—63 so that
12 19+ 7 I <
———ft=——=+4+ ——€< —— 412+ 3
15 15 15 ~— 15 “iTo2=

which can be satisfied if and only if ¢ > — % = <.
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EXAMPLE 5.6 (contq)

— If we replace £ by £' = —-% the least core is the set

15°

C(e!) = X = {(z1, 22,1 — 21 — T9) |

T4 (= Amp = Loag = L)
- 1515-15 : ‘1 — 15:42 — 75:43 — 15

— If we want the imputation of the original unnormalized game, we use r;
(x; — a;)/c and obtain

4 4 7 1 ! 1
— 4+ = L 4 = R
- 5 5 - 5 5 ; [
I = 15 15 1 15 — 2, Iy — 15 15 2, I3y = 15 15 I 15 — 0.

1 i

[l |
o
=1
-
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EXAMPLE 5.7

We have already argued that the core C(0) should consist of
the good imputations and so would be considered the
solution of our game.

— If in fact C(0) contained exactly one point, then that would be true.
Unfortunately, the core may contain many points, as in the last
example, or may even be empty.

Here is an example of a game with an empty core.



EXAMPLE 5.7 (conta)

Suppose that the characteristic function of a three-player game is given by
v(123) =1 =v(12) =v(13) =v(23) and v(1) =wv(2) =v(3) =0.

Since this 1s already in normalized form, the set of imputations is

To calculate the reasonable set K. we need to find

xr; < max{v(T) —v(T —1)},i=1,2,3.
Tell

Starting with TT" = {1, 12,13, 123}, we calculate
v(1) — (@) =0, v(12) —v(2) = 1,v(13) — v(3) = 1,v(123) — v(23) = 0,

so 1 < max{0,1,1,0} = 1. This is true for x, as well as 3. So all we get
from this is R = X, all the imputations are reasonable.
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EXAMPLE 5.7 (conta)

Next we have

C0) = {7 e X

v($) < )@, VS S N},

i€S
If ¥ € C'(0), we calculate
e(i,.©)=v(i)—z;, = —x; <0, e12.7) =1~ (x; + 13) <0
and, in likewise fashion
e(13,7) =1— (1 +23) <0, €(23,7) =1 — (o +x3) <O.
The set of inequalities we have to solve are
i+l oy +axz3 > 1, a0tz 21, 1y +xp+a3=1, ; > 0.

But clearly there is no © € X that can satisfy these inequalities, because it is
impossible to have three positive numbers, any two of which have sum at least
I, which can add up to 1, so C'(0) = 0.
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EXAMPLE 5.8

* Inthis example we will determine a necessary and sufficient
condition for any cooperative game with three players to have
a nonempty core.

— Wetake N = {1, 2,3} and a characteristic function in normalized form

v(i) =v(0) =0, i=1,23, v(123) =1,
f(l?) = a2, L‘[:]S) = a13, '11(2:?}) a2s3.

Of course, we have 0 < a;; < 1. We can state the proposition.

Proposition 5.1.7 For the three-person cooperative game with normalized charac-
teristic function v we have C(0) # O if and only if

a2 + a1z + agy < 2.
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EXAMPLE 5.8 (conta)

Proof. We have

C(0) ={(x1,22.1 — 21 —x2) | ; > 0,012 < 7] + T2,
13 < I+ (1 — I **lfg) =1 — 2, and (193 < 1 —:L'l}.

So, ry + 12 > aya, 72 < 1 — aj3,and 7 < 1 — asy. Adding the last two
inequalities says x7 + o < 2 — a23 — a3 so that with the first inequality

a2 < 2 — a3 — azs. Consequently. if (7(0) # (). it must be true that a5 +
a3 + a3 < 2.
For the other side, if ajo + a3 + a9y < 2, we define the imputation

I = (.’I:l i .‘!';-;}
I —2as3 +a13 +a12 1+ ass —2a13 +a12 1+ a3+ a3 —2a2
3 ' 3 ’ 3 '
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EXAMPLE 5.8 (conta)

Then ry + a9 + 13 = 1 = v(123). Furthermore

v(23) — a9 — 3 = aoy — X9 — 3 = asz3 — 1o — (1 — 1) —X2)
= 923 1+ I
l — 2as3 + a3 + a2
3
_ Q23+ ”'l.‘i“|‘ a2 — 2 < 0.
3
Similarly, ©(12) — &y — 29 < 0 and v(13) — z; — 23 < 0. Hence & € C(0)
and so C'(0) # 0. O

— (923 — ] T
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EXAM P LE 5 8 (cont’d)

 Remark: An Automated Way to Determine Whether C(0) = 0.

— Maple can give us a simple way of determining whether the core is
empty. Consider the linear program:

Minimize z = xy + -+ + I,

subject to ©(5) < Z x; forevery S ¢ N.

€S

It is not hard to check that C(0) is not empty if and only if the linear
program has a minimum, say, =%, and z* < ¢(N) . If the game is
normalized, then we need =" < 1. When this condition is not
satisfied, c'(0) =0 .



EXAM P LE 5 8 (cont’d)

— Forinstance, in the last example the commands would be

with(simplex):

obj:=x+y+z;
cnsts:={1-x-2<=0,1-y-2<=0,1-x-y<=0};
minimize (obj,cnsts,NONNEGATIVE) ;
assign(%);

obj;

Maple gives the output {+ = 3.y = 5.2 = 1} as the allocation and
obj = 3 as the sum of the allocation components. Since this is a game
in which the allocation components must sumto 1,0(N) = 1

, we see that the core must be empty.

vV vV VvV VWV
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5.1.1 Finding the Least Core Problems



Definition 5.1.8

 One way to describe the fact that one imputation is better
than another is the concept of domination.

e Definition 5.1.8

If we have two imputations & € X,y € X, and a nonempty coalition
S C N, then ¥ dominates i/ (for the coalition S) if x; > y; for all members i € S,
and ¥(S) = )_,cqxi < v(5).

— If ¥dominates i for the coalition S, then members of S prefer the
allocation 7 to the allocation iy, because they get more i > v: , for
each i € 5, and the coalition S can actually achieve the allocation

because v(S) > >, . ;.
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Theorem 5.1.9

* Theorem5.1.9
The core of a game is the set of all undominated imputations for the

game; that is,

C(0) = {F € X | thereisno zZ ¢ X and S C N such that

i >r;.Vie S, and Z zi < v(S)}.
'r‘fES

Proof. Call the right hand side the set B. We have to show ('(0) ¢ B and
B c C(0).

We may assume that the game is in (0, 1) normalized form.

Let ¥ € C'(0) and suppose I ¢ B. Since I ¢ B that means that . must be
dominated by another imputation for at least one nonempty coalition S C N that
is, there is y € X and S C N suchthat y; > z; foralli € Sand v(S) = ), g vi.
Summing on ¢ € S this shows

v(S) > Ty > Y 1= e(S.7) >0,
eSS €S

contradicting the fact that ¥ € C'(0). Therefore C'(0) C B.
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Theorem 5.1.9 (cont)

Now let # € B. If ¥ ¢ ('(0), there is a nonempty coalition S C N so that
e(S,T) =v(S) — > ;cqwi > 0. Let

e=uv(5) - Z;r.; >0 and a =1-wv(5) > 0.

i€S
Let s = |S|, the number of players in S, and
z;+ - ifi€S:
s

A-.t.ll (l'

ifi ¢ S.
n— s ¢

—
-

We will show that 2° = (z,....,z,) is an imputation and 2" dominates ' for the
coalition S; that is, that z'is a better allocation for the members of S than is 7.
First z; > 0 and

[}
Z:;:Zmﬁ;i;f;ﬂis;gm, cra=v(S)+1—v(S)=1.

1=1 S

Therefore Z'is an imputation,
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Theorem 5.1.9 (cont)

—

Next we show Z' is a better imputation than is & for the coalition S.If i € S
zi=xi+efs>xiand ), ¢z = ), ¢ +& = v(S). Therefore Z dominates 7.
But this says & ¢ B and that is a contradiction. Hence B € C(0). O
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EXAMPLE 5.9

e Suppose that Bill has 150 sinks to give away to the whomever
shows up to take them away.

— Amy(l), Agnes(2), and Agatha(3) simultaneously show up with their
trucks to take as many of the sinks as their trucks can haul.

— Amy can haul 45, Agnes 60, and Agatha 75, for a total of 180, 30 more
than the maximum of 150.

 The wrinkle in this problem is that the sinks are too heavy for
any one person to load onto the trucks so they must
cooperate in loading the sinks. The question is: How many
sinks should be allocated to each person?



EXAM P LE 5 9 (cont’d)

Define the characteristic function v(.5) as the number of sinks the coalition

S C N = {1,2,3} can load. We have v(i) = 0,7 = 1,2, 3, since they must
cooperate to receive any sinks at all, and

(1

— The set of imputations will be X = {(z, 22, x3)|z; > 0,3 a; = 150},

2) = 105, v(13) = 120, v(23) = 135. v(123) = 150.

— Let's use Maple to see if the core is nonempty:

Chih-Wen Chang @ NCKU
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with(simplex) :

obj:=x1+x2+x3:
cnsts:={105-x1-x2<=0,120-x1-x3<=0, 135-x2-x3<=0};
minimize (obj,cnsts,NONNEGATIVE) ;

assign(%);

obj;

Game Theory, Ch5
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EXAMPLE 5.9 (contq)

— Maple gives the output z; = 45. 29 = 60,23 = 75, andobj = x1 + 2 + 13 =
180 > ©(123) = 150. So the core of this game is empty. A direct way to get
this is to note that the inequalities

ry + x> 105,101 + 3 > 120 and a9 + a3 > 135

imply that 2(xy + x2 + x3) = 2(150) = 300 > 360, which is impossible.

— The next step is to calculate the least core. Begin with the definition:
Cle)={x e X |e(Sz)<e VS C N}
={re X |v(S) - Z.r.- <e}

icS
={Z| 105 <xy +x2 +¢,120 < 21 + 23 + €,

135 <Tr+x3+e,—x; < E}.

Chih-Wen Chang @ NCKU Game Theory, Ch5 76



EXAM P LE 5 9 (cont’d)

We know that 1 + x5 + x3 = 150 so by replacing x5 = 150 — 1} — x5 we
obtain as conditions on ¢ that

120 < 150 — x5 + &, 135 < 150 — 2, + 2, 105 < 21 + 29 + €.

We see that 45 > x1 + 1o — 2 > 105 — 3¢, implying that £ > 20. This 1s in
fact the smallest ' = 20, making C'(g) # (0. Using e! = 20, we calculate

Hence the fair allocation is to let Amy have 35 sinks, Agnes 50, and Agatha 65
sinks, and they all cooperate.
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Lemma 5.1.10

* Lemmab5.1.10

Let

¢! = minmax e(S, T).
FeX SCN

Then the least core X' = C(c') # O and if £ > =1, then C(s') C C(e).

Proof. Since the set of imputations is compact (=closed and bounded) and ' +—
maxg e(S. ) is at least lower semicontinuous, there is an allocation 7y so that
the minimum in the definition of ! is achieved, namely, ¢! = maxg e(S, 7o) >
e(S,7),VS C N. This is the very definition of g € C'(¢!) and so C'(g!) # 0.

On the other hand, if we have a smaller ¢ < ¢! = min; maxsc v . then for every
allocation & € X, we have ¢ < maxg e(S, ). So, for any allocation there is at least
one coalition S C N for which ¢ < (S, ). This means that for this £, no matter
which allocation is given, & ¢ C(g). Thus, C'(¢) = 0. As a result, ! is the smallest
e so that C'(=) # 0. O
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Lemma 5.1.10 (contq)

Remarks.
These remarks summarize the ideas behind the use of the least core.

1. For a given grand allocation ', the coalition S that most objects to ' is the
coalition giving the largest excess and so satisfies

So.Z) = maxe(S, ).
e(Sp.T) ggtjce( r)

For each fixed coalition S, the allocation giving the minimum dissatisfaction
is
e(S,Tp) = mine(S, 7).
Fex
2. The value of ¢ giving the least £-core is

¢! = min maxe(S, ),
FEX SCN

and this 1s the smallest level of dissatisfaction.
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Lemma 5.1.10 (contq)

3. Ife! = minz maxgc ny < 0, thenthere is an allocation Z* so that maxg e(S, I'*) <
0. That means that (.S, ©*) < 0 for every coalition S C N. Every coalition is
satisfied with 2™ because v(S) < £*(.5), so that every coalition is allocated at
least its maximum value.

Ife! = minz maxscn > 0, then for every allocation ¥ € X, maxg e(S.7) >
0. Consequently, there is at least one coalition S so that e(S,7) = v(S) —

7(S) > 0. For any allocation, there is at least one coalition that will not be
happy with it.

Chih-Wen Chang @ NCKU Game Theory, Ch5



Lemma 5 1 10 (cont’d)

4. The excess function e(.S,7) is a measure of dissatisfaction of S with the
imputation . It makes sense that the best imputation would minimize the
largest dissatisfaction over all the coalitions. This leads us to one possible
definition of a solution for the n-person cooperative game. An allocation
x* € X is a solution to the cooperative game if

e! = min maxe(S,x) = maxe(S, z*),
feX S S
so that ¥ minimizes the maximum excess for any coalition S. When there is
only one such allocation ™, it 1s the fair allocation. The problem is that there
may be more than one element in the least core, then we still have a problem
as to how to choose among them.
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Maple Calculation of the Least Core

Remark: Maple Calculation of the Least Core. The point of calculating the
e-core is that the core is not a sufficient set to ultimately solve the problem in the
case when the core ("(0) is (1) empty or (2) consists of more than one point. In case
(2) the issue, of course, is which point should be chosen as the fair allocation. The
e-core seeks to address this issue by shrinking the core at the same rate from each
side of the boundary until we reach a single point. We can use Maple to do this.

The calculation of the least core is equivalent to the linear programming problem

Minimize z
subject to

v(S) — #(S) = v(S5) Z , forall S C N.
€S

The characteristic function need not be normalized. So all we really need to do is
to formulate the game using characteristic functions, write down the constraints, and
plug them into Maple. The result will be the smallest z = ! that makes C'(') # 0.
as well as an imputation which provides the minimum.
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Maple Calculation of the Least Core (contq)

The Maple commands used to solve this are very simple:

> with(simplex):

> cnsts:={-xl1<=z,-x2<=z,-x3<=z,2-x1-x2<=z,1-x2-x3<=z,-x1-x3<=z,
x1+x2+x3=\frac {5}{2}};
> minimize(z,cnsts);

e Maple produces the output

D . 1 1

Irn = —, I3 =1, Ty==—, 2= ——,

4 4 4
Hence the smallest =' = = for which the s-core is nonempty is ¢! = *ll Now,
Maple also gives us the allocation ¥ = (2.1. 1) which will be in (' (—7). but we

don’t know if that is the only point in ' (—1) .
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Maple Calculation of the Least Core (contq)

« With Maple we can graph the core and the set C' (— ) with the following
commands:

> cnsts:={-x1<=z,-x2<=z,-(5/2-x1-x2)<=z,2-x1-x2<=z,
1-x2-(5/2-x1-x2)<=z,-x1-(5/2-x1-x2)<=z};

Core:=subs(z=0,cnsts);

with(plots):

inequal (Core,x1=0..2,x2=0..3,optionsfeasible=(color=red),
optionsopen=(color=blue,thickness=2),
optionsclosed=(color=green, thickness=3),
optionsexcluded=(color=yellow));

ECore:=subs(z=-1/4,cnsts);

inequal (ECore,x1=0..2,x2=0..3,0optionsfeasible=(color=red),
optionsopen=(color=blue,thickness=2),
optionsclosed=(color=green, thickness=3),
optionsexcluded=(color=yellow));

VOV V V V VOV VOV VOV
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Maple Calculation of the Least Core (contq)

Figure 5.3 shows the core C'(0).

3_

.
AN

0 0.5 1.0 1.5 2.0

Figure 5.3 Graph of C'(0).
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Maple Calculation of the Least Core (contq)

You can even see how the core shrinks to the c-core using an animation:

> animate(inequal, [cnsts, x1=0..2,x%2=0..3,
optionsfeasible=(color=red),
optionsopen=(color=blue,thickness=2),
optionsclosed=(color=green,thickness=3),

optionsexcluded=(color=white)],
z=-1..0,frames=50) ;

Figure 5.4 results from the animation at z = —0.18367 with the dark region consti-
tuting the core C'(—0.18367). You will see that at = =

the line segment. Hence C' (— %) is certainly not empty, but it is also not just one
point.

% the dark region becomes
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Maple Calculation of the Least Core (contq)

z= - 18347

C(-0.18367)

T T T 1
0 0.5 1.0 1.5 2.0

Figure 5.4 The shrinking of the core frozen at C'(—0.18367).

So we have solved any cooperative game if the least core contains exactly one
point. But when C'(¢') = X! has more than one point, we still have a problem, and
that leads us in the next section to the nucleolus.
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5.2 The Nucleolus Problems



THE NUCLEOLUS

 The core C(0) might be empty, but we can find an ¢ so that
C(e) is not empty. We can fix the empty problem. Even if C(0)is
not empty, it may contain more than one point and again we
can use C(¢) to maybe shrink the core down to one point or, if
.C(0) = 0, to expand the core until we get it nonempty. The
problem is what happens when the least core C(¢) itself has
too many points.

* Inthe previous section we saw that we should shrink C(0) to
C(e'), soif C(¢') has more than one allocation, why not shrink
that also? No reason at all.



EXAMPLE 5.10

— Let us take the normalized characteristic function for the three—player game

4 2 1
v(12) = 5,1}(13) = —,v(23) = z and v(123) = 1,v(i) =0, i =1,2,3.
J :

Step 1: Calculate the least core. We have the z-core

Ce) = {(x1,22,23) € X | e(S,2) <&, VS C N}

, 4
={(z1, 22,1 — 21 —22) | —e <1y <cte
3 4
—e<r2< - +e ——e<r+T2<1+¢}
) (9]
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— We then calculate that the smallest = for which C’(

then

EXAMPLE 5.10

1

r

- ) ={(r1.10.1 —y —x2) | 2y €

10

Io ©

n

]
T

) # (s ¢ 0 and

2 7

5710]"

LR

52| T T 00

— This is a line segment in the (x,, r7) plane as we see in Figure 5.5, which is
obtained from the Maple animation shrinking the core down to the line frozen

at z =

Chih-Wen Chang @ NCKU

0.07.
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EXAM PLE 5 . 10 (cont’d)

7 =-.70707¢c-1

0.8+

0.6 -

0.4

C(-0.0707)

0.2

0 0.2 04 0.6 0.8 1.0

Figure 5.5 ('(—0.07) : shrinking down to a line segment.
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EXAM PLE 5 . 10 (cont’d)

— So we have the problem that the least core does not have only one
imputation that we would be able to call our solution. What is the fair
allocation now? We must shrink the line down somehow.

Step 2: Calculate the next least core. The idea is, restricted to the
allocations in the first least core, minimize the maximum excesses over all the
allocations in the least core. So we must take allocations with 7 = (1. 12, 73).
with =’: <1 < % l} < x9 < 1 and z; + 2o = . This last equality then

10
requires that 3 = 1 — 1| — a9 %

| '\.“-"

[l we take any allocation ' € C'(¢!), we want to calculate the excesses for
each coalition:

e(1,7) = —1y e(2,r) = —x9
e(13,7) = a9 - -_3 e(23,7) = x %
C(lir):%— ry —Ig = -—% f'(%..?):—.l‘;;‘——-——l"
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EXAMPLE 5.10 (conta)

— If we take any allocation I € C'(¢'), we want to calculate the excesses for
each coalition:

e(l.7) = —xy e(2,7) = —a»
(]3T=agf% e(23,7) = %
=y 4 . 1 9 A 1
(121 —3—.11—12:—m fi(t};l)_—r:i—_m
Since ¥ € C'(e'), we know that these are all < ’ﬁi Observe that the excesses
e(12,7) = e(3,7) = m do not depend on the allocation " as long as it is in

C'(¢'). But then, there is nothing we can do about those coalitions by changing
the allocation. Those coalitions will always have an excess of — ]1—0 as long as
the imputations are in C'(¢'), and they cannot be reduced. Therefore, we may
eliminate those coalitions from further consideration.
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EXAM PLE 5 . 10 (cont’d)

Now we set
S'={SC N |eS.T)<e'. forsome ¥ € C(e')}.

This is a set of coalitions with excesses for some imputation smaller than &'.

— These coalitions can use some imputation that gives a better allocation for
them, as long as the allocations used are also in C' (—+5). For our example,
we gel

y=1{1,2,13,23}.

The coalitions {12} and {3} are out because the excesses of those coalitions
cannot be dropped below — ﬁ no matter what allocation we use in C'(— Il()).

Their level of dissatisfaction cannot be dropped any further.,
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EXAM PLE 5 . 10 (cont’d)

— Now pick any allocation in C(——I%) and calculate the smallest level of

dissatisfaction for the coalitions in 3! :

¢? = min max e(S, ©).
FeX! Sey!

The number =2 is then the smallest maximum excess over all allocations in

C'(- ﬁ) It is defined just as is €' except we restrict to the coalitions that can

have their dissatisfaction reduced. Finally, set
X?={TFeX'=CE | e(5.7)<e? vS e ul).

* The set X? is the subset of allocations from X! that are preferred by the coalitions in
¥l
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EXAMPLE 5.10 (conta)

(6o

<

(91}

. — [
In our example we now use allocations & € X! so that z; + a2 = fjﬁa 1
r1 < {5.and 2 < x5 < 5. The next least core is

Ce?)=X?={Te X' |e(1,%) <e?,e(2,%) < €2,
e(13,7) < e%,e(23,7) <}
_FeX' | —m <P —m <
3 .
Ta— - < 52,3-'-1 -
5

< e?}.

T W=

— We need to find the smallest 2 for which X2 is nonempty. We do this by hand
as follows. Since 1 + 192 = %, we get rid of x9 = % — x1. Then

9

—xq < &2 —IQZ;L‘l—-i(Ez:‘—?—EQ—i(EQ:>€2>——

a 10 — 10 — - 20
9 3 2 4 2 5 2 2 2 D
——T1—-<¢€% 11— = ———€“<e’ = &2 ——,
10 15} 5 10 20
and so on.
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EXAMPLE 5.10 (conta)

The smallest £ satisfying all the requirements is then £? 2

~ 720
Next, we replace ¢ by —7 in the definition of X? to get
1 , 1 1
C’(_Z) =X*={feX'| —a < —p TS
31 11
Ty — - ———J‘ — — — —
PTE5 - T T 57
1 111 7
—{FeX'|-<p <=, Z<py< —
weXlgsmsgy g g

The last equality gives us

S S W A A W |
“\20 ! 20 e

201 L2 = 569

|

since both terms are nonnegative and cannot add up to zero unless they are each

zero. So we have found z; = % T2 = 55,
second least core

: 117 2
2_ _—— — _— =
A= {(20’ 20’ 20)}’

Game Theory, Ch5
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and, finally, r3 = % We have our
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EXAM PLE 5 . 10 (cont’d)

— X2 consists of exactly one point. That is our solution to the problem.
Notice that for this allocation

1
e(13,7) = zp — 12/20 = -3

7
20

4 1
-11/20— = = —=
/ ) 1

Ao O] e

-
S’

€(23,7) =z, —

e(l,7) = —11/20, and «(2,.;;):—%.

. 1
and each of these is a constant smaller than — 5.
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EXAM PLE 5 . 10 (cont’d)

« The most difficult part of this procedure is finding ¢!, =2, and so on. This

: : : L 1
is where Maple is a great help. For instance, we can find £~ = — 7 very
easily if we use the commands

> with(simplex):

> cnsts:={-x1<=z,-x2<=z,x2-3/5<=z,x1-4/56<=z,x1+x2=\frac {9}{10}};
> minimize(z,cnsts);

o

Maple informs us that z=-1/4, x1=11/20, x2=7/20.
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EXAM PLE 5 . 10 (cont’d)

In general, we would need to continue this procedure if X * also contained more
than one point. Here are the sequence of steps to take in general until we get down
to one point:

1. Step 0: Initialize. We start with the set of all possible imputations X and the
coalitions excluding N and (:

X'=X, ¥'={SCN,S#0}

2. Step k > 1: Successively calculate

(a) The minimum of the maximum dissatisfaction

¥ = min  max e(S,T).

FeXk-1 Sgxk—1
(b) The set of allocations achieving the minimax dissatisfaction

Xf={re X*1|c¥= min max e(S,F)= max e(S.T)}
FeXk-15cxk-1 Sexk-1

{7 e XF 1 e(S,7) <eb, vSCuh-1)
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EXAMPLE 5.10 (conta)

(¢) The set of coalitions achieving the minimax dissatisfaction
Sp={Se Xt es,7) =k vie XF).
(d) Delete these coalitions from the previous set
wh=wk=1 5.

3. Step: Test if Done. If ¥* = () we are done; otherwise set k = k£ + 1 and go
to step (2) with the new A.

When this algorithm stops at, say, & = m, then X" is the nucleolus of the core
and will satisfy the relationships

XmcXmlc..c X' =0E")c X=X

Also, ¥ 5 ¥ 5 2.1 5 ¥ — (). The allocation sets decrease down to
a single point, the nucleolus, and the unhappiest coalitions decrease down to the
empty set. The nucleolus is guaranteed to contain only one allocation 7, and this is
the solution of the game. In fact, the following theorem can be proved.'
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Theorem 5.2.1

e Theorem5.2.1

The nucleolus algorithm stops in a finite number of steps m < o0
and for each k = 1,2, ..., m we have

[. —o0 < &) < 00.
2. X% £ 0 are convex, closed, and bounded.

3. %k #Wfork =1,2,..., m — 1.

4. Ek41 < Ek-

In addition, X" is a single point, called the nucleolus of the game:

T

Nucleolus — X = ﬂ Xk,
k=1

Chih-Wen Chang @ NCKU Game Theory, Ch5 103



Theorem 5.2.1 (cont)

* The nucleolus algorithm stops when all coalitions have been
eliminated, but when working this out by hand you don't have
to go that far. When you see that X is a single point you may
stop.

— The procedure to find the nucleolus can be formulated as a sequence
of linear programs that can be solved using Maple.

To begin, set & = 1 and calculate the constraint set
X'={Fe X |elS.F)<e VS C N
The smallest = that makes this nonempty is !, given by

e!' = min max (S5, 7). ¥’ ={S|SC N,0}.

reX Sexv



Theorem 5.2.1 (cont)

o The first linear programming problem that will yield ', X', 3! is

Minimize =
subjectto v(S) — F(S) < e, ¥ e XV = X.

The set of ' values that provide the minimum in this problem is labeled X! (this is
the least core). Now we take

Y1 =1{5e¥x|e(S7) =<' Vie X},

which is the set of coalitions that give excess £* for any allocation in X . Getting rid
of those gives us the next set of coalitions that we have to deal with, ! = XY — 3.
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Theorem 5.2.1 (cont)

* The next linear programming problem can now be formulated:

Minimize =
subjectto v(S) — #(S) < e, e X1, Se Xl =% -3,

The minimum such = is 2, and we set X 2 to be the set of allocations in X ! at which
=2 = maxgesn (S, T). Then

Yo = {S € Ne(S,7) =, Vi e X?).

Set ¥%2 = 1 — 3, and see if this is empty. If so, we are done; if not, we continue
until we get our solution.
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EXAMPLE 5.11

 Three hospitals, A,B,C, want to have a proton therapy
accelerator (PTA) to provide precise radiological cancer
therapy. These are very expensive devices because they are
subatomic particle accelarators. The hospitals can choose to

build their own or build one, centrally located, PTA to which
they may refer their patients.



EXAM PLE 5 . 1 1 (cont’d)

* The costs for building their own PTA are estimated at 50, 30,
50, for A,B,C, respectively. The units for these numbers are
million-dollars. If A and B cooperate to build a PTA, the total
cost will be 60 because of land costs for the location,
coordination, and so on. If B and C cooperate, the cost will be
70; if A and C cooperate, the cost will be 110. Because the
cost for cooperation between A and Cis greater than what it
would cost if they built their own, they would decide to build
their own, so the cost is still 100 for AC cooperation. Finally,
the cost to build one PTA for all three hospitals A,B,C is 105.



EXAM PLE 5 . 1 1 (cont’d)

— We reformulate the problem by looking at the amount saved by each
player and for each coalition.

— The characteristic function is then
v(S) = total cost if each ¢ € S builds its own — cost if they cooperate.
With A=player 1, B=player 2, C=player 3, we get
(1) =v(2) =v3) =v(13) = 0,v(12) = 20,v(23) = 10,v(123) = 25.

For instance, v(123) = 50 + 30 + 50 — 105 = 25. We are looking for the fair
allocation of the savings to each hospital that we can then translate back to
costs. This game is not in normalized form and need not be.
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EXAMPLE 5.11 (conra)

—  The first linear program finds the least core:
Minimize ¢
subject to
{—x; <e,i0=1,2,3, —(r1+x3) <e, 20— (x; +15) < &,
10 — (z2 + x3) <&, 1 + 12 + 13 = 25}.

Thisgivesuse! = — -;-’ which you should check without using Maple.Replacing

ebye! = % and simplifying, we see that the least core will be the set

D 25 45
X' = {(II’IQ’QS‘TJI —Z2) | > < < 21t T2 = ?}
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EXAM PLE 5 . 1 1 (cont’d)

4

— Notice that x5 = 25 — ?“‘ — 2. Next we have to calculate

] el

Y ={S e |e(S,F)=c"Vie X"}

Calculate the excesses for all the coalitions except NV, (), assuming that the
allocations are in X ! :

5)
(’(ITJ_":) — ?"T(l) — I = —Iy, E(Q?E) = — &2, 8(3}.’3) = —I3 = _5
— 45 5
e(12,7) = v(12) —xy — 29 = 20 — 5 =3
D 5]
f’(13r) = ?’(13) —Ir — I3 — 0— rn ——=—I — <
2 2
5 15
e(23,7) =v(23) —x90 —x3 =10 — x5 — =5 ~ T
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EXAMPLE 5.11 (conra)

Thus the coalitions that give ¢! = —2 are ; = {12,3}, and so these two

coalitions are dropped from consideration in the next step. The ones left are
¥ =%%-{12,3} = {1,2,13,23}.

— This is going to lead to the constraint set for the next linear program:
Minimize &,

subject to 7 € X2,
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EXAMPLE 5.11 (conra)

We get the solution of this linear program as

15 15 D
2
Ef=——, T1 = ,ro = 15, and 13 = —.

Furthermore, it is the one and only solution, so we should be done, but we will
continue with the algorithm until we end up with an empty set of coalitions.

Calculate the excesses for all the coalitions excluding N, (), assuming that
the allocations are in X2 :

'lr =
e(l,7) = —x; = —?J, e(2,7) = —xo = —15, €(3,7) = —x3 = T%’
45 5
(12, %) = v(12) — 1 — a2 = 20 — ?" =-3
5 15 5 20
(13.7)=v(13) -1 —a3=0—-01 — == —— — = = ——,
¢(13,7) = v(13) — x1 — a3 Ty 3 5 3 5
5 15 15 15
(23, 7)) =v(23) — a9 —a13 =10—20 — == — — 29 = — — 15 = ——,
E’( a‘l’) ”( ) £ L3 L2 9 5 xro 5 ) 5
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EXAM PLE 5 . 1 1 (cont’d)

so that €(23,7) = e(1,¥) = —12. Now we can get rid of coalitions £y =
{1,3,12,13,23} because none of the excesses for those coalitions can be
further reduced by changing the allocations. Then

Y2=x!'_3,=0.

— We are now done, having followed the algorithm all the way through. We

conclude that . -
5
N lus = —.15, - .
ucleolus {(2 ) 2)}
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EXAMPLE 5.12

In this example we will give the Maple commands at each stage to find the
nucleolus. This entire procedure can be automated but that is a programming

problem.
We take the characteristic function
. . , 1 N 1 5!
v(i) =0,1=1,2,3, v(12) = =, v(13) = =, v(23) = =, v(123) = 1,
3 § 6

and this is in normalized form. We see that % + é + T: < 2, and so the core of
the game C'(0) is not empty by Proposition 5.1.7. We need to find the allocation
within the core which solves our problem.
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EXAM PLE 5 . 12 (cont’d)

In this example we will give the Maple commands at each stage to
find the nucleolus. This entire procedure can be automated but that
is @ programming problem.

We take the characteristic function

- 1 1 5
I“} 0.2 =1.2.3. I‘(]j) = =, f‘(]_}) = —, -31{23) — 2{-(123) - ]T
3 - O 6

and this is in normalized form. We see that ;+ ; + 2 <2, and
so the core of the game C(0) is not empty by Proposition
5.1.7. We need to find the allocation within the core which
solves our problem.



EXAM PLE 5 . 12 (cont’d)

1. First linear programming problem. We start with the full set of

possible coalitions excluding the grand coalition N 0
»0 = {1,2,3,12,13,23} . . In addition, with the given

characteristic function, we get the excesses
e(l.r) = —x. e(2.2) = —x9, €(3,T) = —x3
((IQI) = ]—5 — I — .I‘-_)._t?(.lg. ;F] = EI; — I Ia

§ [:‘.23 T) = é — T9 — Iy

 The Maple commands that give the solution are

> with(simplex):v1:=0:v2:=0:v3:=0:v12:=1/3:v13:=1/6:
v23:=5/6:v123:=1;
> cnsts:={vl-xl<=z,v2-x2<=2z,v3-x3<=z,v12-(x1+x2) <=z,
v13-(x1+x3)<=2z,v23- (x2+x3) <=z, x1+x2+x3=v123};

> minimize(z,cnsts);

117
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EXAM PLE 5 . 12 (cont’d)

. . 1 ., 1 . 3 . 1
* Maple gives the solution ' = z = —15,21 = 15,72 = 7,23 = § .S0

this gives the allocation 7= (&,3,4).

— But this is not necessarily the unique allo-cation and therefore the solution to

our game.
. H 4 r H o — 1
— To see if there are more allocations in X!, substitute = = —715 as well as
r3 = l—x1 -2 in the constraint set.

 To do that in Maple use the substitute command
> fcnsts:=subs(z=-1/12,x1=1-x2-x3,cnsts) ;

— This will put the new constraint set into the variable f cnsts and gives us the

output
fcnsts={1=1,x3 <= 7/12,-x2 <= -1/12, -x3 <= -1/12,
-x2-x3 <= =11/12, x2+x3 <= 11/12, x2 <= 3/4}.
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EXAM PLE 5 . 12 (cont’d)

* To get rid of the first equality so that we can continue, use

> gcnsts:=fcnsts[2..7];

e This puts the second through seventh elements of f cnsts into
gecnsts. Now, to see if there are other solutions, we need to solve
the system of inequalities in gcnsts for 1, T2 . Maple does that as
follows:

> with(SolveTools:-Inequality):
> glc:=LinearMultivariateSystem(gcnsts, [x2,x3]);
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EXAM PLE 5 . 12 (cont’d)

 Maple solves the system of inequalities in the sense that it reduces
the inequal-ities to simplest form and gives the following output:

{x2 <=3/4,1/3<=x2} {x3<=-x2+11/12, -x2+11/12<=x3}.

—_ 1 3 11 . 1
We see that <oy <3 agtaz=Yanda =&
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EXAM PLE 5 . 12 (cont’d)

e 2.To get the second linear program we first have to see which
coalitions are dropped. First we assign the variables that are known
from the first linear program and recalculate the constraints:

> assign(x1=1/12,z=-1/12);
> cnstsl:={vl-x1<=2z,v2-%x2<=2,v3-x3<=2z,v12-(x1+x2) <=z,
v13-(x1+x3)<=2z,v23- (x2+x3) <=z, x1+x2+x3=v123};

 Maple gives the output:

cnstsl:={-x3 <= -1/12, -x2-x3<=-11/12,-%x2 <=-1/12,-x2 <= -1/3,
-1/12 <= -1/12,-x3 <=-1/6, 1/12+x2+x3=1}.
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EXAM PLE 5 . 12 (cont’d)

e Getting rid of the coalitions that have excess= — y” (indicated by
the output without any x variables), we have the new constraint set

> cnsts2:={v2-x2<=z2,v3-x3<=22,v12-(x1+x2)<=2z2,
v13-(x1+x3)<=22,x1+x2+x3=v123};

* Now we solve the second linear program

> minimize(z2,cnsts2);
— which gives

| =
=] Q2
ool L2
o
H=

—~

b
—~

-
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EXAM PLE 5 . 12 (cont’d)

At each stage we need to determine whether there is more than
one solution of the linear programming problem. To do that, we
have to substitute our solution for z, into the constraints and solve
the inequalities:

> fcnsts2:=subs(z2=-7/24,\frac {11}{12}=x2+x3,cnsts2);
> gcnsts2:=fcnsts2[2..5] union

{x2+x3<=\frac {11}{12},x2+x3>=\frac {11}{12}};
> glc2:=LinearMultivariateSystem(gcnsts2, [x2,x3]);

We get
glc2:={x2=13/24,x3 <= x2+x3=11/12},

and we know now that =1 = {5.22 = 31. and x5 = 2 because s + r3 = =
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EXAMPLE 5.13

— Three cities are to be connected to a water tower at a central location. Label
the three cities 1, 2, 3 and the water tower as 0. The cost to lay pipe connecting
location ¢ with location j is denoted as c;;,7 # 7. Figure 5.6 contains the data
for our problem.

Figure 5.6 Three cities and a water tower.
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EXAM PLE 5 . 13 (cont’d)

—  Coalitions among cities can form for pipe to be laid to the water tower. For
example, it is possible for city 1 and city 3 to join up so that the cost to the
coalition {13} would be the sum of the cost of going from 1 to 3 and then 3
to 0. It may be possible to connect from 1 to 3 to O but not from3to 1 to 0
depending on land conditions. We have the following costs in which we do not
treat the water tower as a player:

c] = 9,(!2 = 1U,C3 — ]],(7123 = 18,
C12 — 17,(3]3 = 10,623 = 11.

The single-player coalitions correspond to hooking up that city directly to
location 0. Converting this to a savings game, we let ¢(.S) be the total cost for

coalition S and

v(S) = Z ¢; — ¢(S) = amount saved by coalition S.

15
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EXAMPLE 5.13 (conta)

— This 1s a three-player game with the set of possible coalitions
2N = {0, N, 1,2,3,12.13,23, 123},
and we calculate the characteristic function

v(i) =0, i=1,2,3, v(123)=30— 18 = 12,
v(12) = 19 — 17 = 2, v(13) = 2, v(23) = 10.

We will find the nucleolus of this game. First, the core of the game is
illustrated in Figure 5.7.
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EXAM PLE 5 . 13 (cont’d)

Figure 5.7 Core of three-city problem.
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EXAM PLE 5 . 13 (cont’d)

* Thisis clearly a nonempty set with many points, so we need to find
the nucleolus. This is the complete set of Maple commands needed

to do this:

> restart:with(simplex):v1:=0:v2:=0:v3:=0:
v12:=2:v13:=2:v23:=10:v123:=12;

> with(SolveTools:-Inequality):

cnsts:={vl-x1<=z,v2-x2<=z,v3-x3<=2z,v12-(x1+x2) <=2z,
v13-(x1+x3)<=2z,v23-(x2+x3) <=z ,x1+x2+x3=v123};

minimize(z,cnsts);

fcnsts:=subs(z=-1,x3=12-x1-x2,cnsts);

gensts:=fcnsts[1..7] minus {fcnsts[2]};

Corel:=subs(z=0,x3=12-x1-x2,cnsts);
Core:=Corel minus {Corel[1]};#This is needed to get rid of all
#equalities in Corel

v

VvV V V V v
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EXAMPLE 5.13 (conta)

> with(plots) :#The next command plots the core.

> inequal( Core,x1=0..12, x2=0..12,
optionsfeasible=(color=red),
optionsopen=(color=blue,thickness=2),
optionsclosed=(color=green, thickness=3),
optionsexcluded=(color=yellow),labels=[x1,x2] );
> # Now we set up for the next least core.

> glc:=LinearMultivariateSystem(gcnsts, [x1,x2]);

> assign(xl=1,z=-1);

> cnstsl:={vl-x1<=z,v2-x2<=z,v3-x3<=z,v12-(x1+x2) <=z,

v13-(x1+x3)<=2z,v23-(x2+x3) <=z, x1+x2+x3=v123};

> cnsts2:={v2-x2<=z2,v3-x3<=2z2,v13-(x1+x3)<=z2,
v12-(x1+x2)<=2z2,x1+x2+x3=v123};
> minimize(z2,cnsts2); #This command results in z2=-9/2
for the second least core.
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EXAMPLE 5.13 (conta)

> fcnsts2:=subs(z2=-9/2,cnsts2);
> gcnsts2:=fcnsts2[2..4] union {x2+x3<=11,x2+x3>=11};#Needed to
#convert equality to inequality

# We now see if the second least core has more than one point.

g1c2:=LinearMu1tivariateSystem(gcnstsQ,[x2,x3]);

assign(x2=11-x3,z2=-9/2);

cnsts3:={v2-x2<=22,v3-x3<=22,v12-(x1+x2)<=22,
v13-(x1+x3)<=22,x1+x2+x3=v123};

VoV VWV
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EXAM PLE 5 . 13 (cont’d)

* When we get to the last execution group, we have already
determined that #, = 1.2, + 23 = 11, and the last constraint set
gives

cnst3={12 = 12, -x3 <= -9/2, -x3 <= -11/2, x3 <= 13/2, x3 <= 11/2},

which tells us that =3 = 4 and 2. = 11 — 1 = 41 We have found

that the nucleolus consists of the single allocation



5.3 The Shapley Value Problems



The Shapley Value

 We change the definition of fair from minimizing the
maximum dissatisfaction to allocating an amount
proportional to the benefit each coalition derives from
having a specific player as a member.

— The question is how do we figure out how much benefit each player
adds to a coalition. Lloyd Shapley came up with a way.



Definition 5.3.1

e Definition 5.3.1

An allocation ¥ = (xq,...,: r,, ) is called the Shapley value if
S| — DI|IN| —|S]))!
Ti = Z [1;(5’)—-1_1(5’—?)]“ | )|1(\!r|!| 151) .t =1,2.....n,
{Selr}

where 11" is the set of all coalitions S C N containing i as a member (i.e., 1 € S),
S| =number of members in S, and |N| = n.

— To see where this definition comes from, fix a player, say, i, and

consider the random variable Z, which takes its values in the set of all
possible coalitions 2V,

— Z,is the coalition S in which i is the last player to join Sand n - |S]
players join the grand coalition after player i.
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Definition 5.3.1 (conta)

— Diagrammatically, if i joins the coalition S on the way to the formation
of the grand coalition, we have

(@) ---US1=2)(S|-1) (1)  (n—[S))n—[S]-1)---(2)(1)
" — > \ ; " - i
S| — 1 arrive ¢ arrives remaining arrive

* For agiven coalition S, by elementary probability, there are
(|S] — )!(n-|S|)! ways i can join the grand coalition N,
joining S first. With this reasoning, we assume that Z; has the
probability distribution

(IS -1)!(n — |S))!

n!

Prob(Z; = 5)

Chih-Wen Chang @ NCKU Game Theory, Ch5 135



Definition 5.3.1 (conta)

— The denominator is the total number of ways that the grand coalition
can form among n players. Any of the n! permutations has probability
of actually being the way the players join.

* This distribution assumes that they are all equally likely.

— Therefore, for the fixed player i, the benefit player i brings to the
coalition Z;is v(Z) — v(Z, — i). It seems reasonable that the amount of
the total grand coalition benefits that should be allocated to player i
should be the expected value of v(Z)) — v(Z, — i). This gives,

v = Ew(Z:) —v(Zi—i)] = Y  [v(S)=-v(S—1i)|Prob(Z; = S)
{S€ell;}
S| —1)(n - |S|)!
- ¥ 0(S) — (s — i) 12 )n(,” S
{Selni} '

The Shapley value (or vector) is then the allocation & = (z.....z,) .



EXAMPLE 5.14

— Two players have to divide $M, but they each get zero if they can’t reach an
agreement as to how to divde it. What is the fair division? Obviously, without
regard to the benefit derived from the money the allocation should be A/2 to
each player. Let’s see if Shapley gives that.

Define v(1) = v(2) = 0,v(12) = M. Then

! ' M
£] = ['“(1) '”(@)]%2! + [’U(]Q) — 1;(2) 10! e M

o1 T g9

— Note that if we solve this problem using the least core approach, we get

('(E) — {(.I'I.J'Q) l f“(S. .I') S fngS' ; J:\_r}
- {l:J'l ? ‘1.2:) I o .f.'l < E" _'1:2 S ‘51 J:l —l_ +r2 = Pl[}

M
= {(.I'] ..1'2) | ] = Ig = ?} ;
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EXAM P LE 5 . 14 (cont’d)

— The reason for this is that if vy > —&, 19 > —g, then adding, we have
—2e < xy + x2 = M. This implies that ¢ > —AI/2, is the restriction on
. The smallest £ that makes C'(s) # 0 is then ¢! = —A[/2. Then x| >
M /2, xo > M/2 and, since they add to M, it must be that x| = xy = M/2.
So the least core allocation and the Shapley value coincide in the problem.
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EXAMPLE 5.15

— Let's go back to the sink allocation (Example 5.9) with Amy, Agnes, and
Agatha. Using the core concept, we obtained

player | Truck Capacity  Allocation
Amy 45 35

Agnes | 60 50

Agatha | 75 635

Total 180 150

— The characteristic function was
v(i) = 0,v(13) = 120,v(12) = 105, v(23) = 135, v(123) = 150
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EXAMPLE 5.15

— In this case n = 3, n! = 6 and for playeri = 1, II' = {1,12,13.123},s0

(IS — )43 — |S))!

r = Z [w(S) —v(S —1)] o
{Sern') -
2000 _ 11!
— [ay o e ) o it
= [v(1) — v(0)] TR 0(12) — v(2) 3
o 11! 210!
= 0+ 1(]"]l +1‘2(]l + [150 13"]2
a 6 6 LY T G
= 425
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EXAMPLE 5.15 (conta)

— Similarly, with more details,

(51— D3 — |S])!
6

T2 = Yy [0(S)—v(S-2)
{Scl12}

[v(2) — v(0)]|Prob(Zy = 2) + [v(12) — v(1)|Prob(Z, = 12)

+  [v(23) —v(3)|Prob(Z; = 23) + [v(123) — v(13)]Prob(Z, = 123)

1 1 2
0+ 105— 4+ 135— 150 — 135 =

6+ 6-!-[ 15 u]ﬁ
50,
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EXAMPLE 5.15 (conta)

1V G
— 3 = Z [’L-'(S)—U(S—B)}“Sl 1)'6(3 5)!

{Sel3}
[v(3) — v(0))Prob(Zs = 3) + [v(13) — v(1)|Prob(Zs = 13)
+  [v(23) — v(2)|Prob(Zs = 23) + [v(123) — v(12)| Prob(Z; = 123)

1 1 2
0+ 120= + 135=+ 150 — 105| =
6+ J6+[ ) }6

57.5.

Consequently, the Shapley vector is & = (42.5,50, 57.5), or, since we can’t
split sinks © = (43.50,57), an allocation quite different from the nucleolus
solution of (35, 50.65).
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EXAMPLE 5.16

A typical and interesting fair allocation problem involves a debtor who owes
money to more than one creditor. The problem is that the debtor does not have
enough money to pay off the entire amount owed to all the creditors. Con-
sequently, the debtor must negotiate with the creditors to reach an agreement
about what portion of the assets of the debtor will be paid to each creditor.
Usually, but not always, these agreements are imposed by a bankruptcy court.

Let’s take a specific problem. Suppose that debtor D has exactly $100,000
to pay off three creditors A,B.C. Debtor D owes A $50,000; D owes B $65.000,
and D owes C $10,000.

Now it is possible for D to split up the $100K (K=1000) on the basis of
percentages; that is, the total owed is $125,000 and the amount owed to A is
40% of that, to B 1s 52%, and to C about 8%, so A would get $40K, B would
get $52K and C would get $8K. What if the players could form coalitions to
try to get more?
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EXAM PLE 5 . 16 (cont’d)

Let’s take the characteristic function as follows. The three players are A,B,C
and (with amounts in thousands of dollars)

v(A) = 25, v(B) =40, v(C) =0,
v(AB) = 90. v(AC) = 35, v(BC) = 50, v(ABC) = 100.

To explain this choice of characteristic function, consider the coalition consist-
ing of just A, If we look at the worst that could happen to A, it would be that
B and C get paid off completely and A gets what’s left, if anything. If B gets
$65K and C gets $10K then $25K is left for A, and so we take v(A) = 25.
Similarly, if A and B get the entire $100K, then C gets $0. If we consider the
coalition AC they look at the fact that in the worst case B gets paid $65K and
they have $35K left as the value of their coalition. This characteristic function
is a little pessimistic since it is also possible to consider that AC would be paid
$75K and then v(AC) = 75. So other characteristic functions are certainly
possible. On the other hand, if two creditors can form a coalition to freeze out
the third creditor not in the coalition, then the characteristic function we use
here 1s exactly the result.
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EXAMPLE 5.16 (conta)

Now we compute the Shaplcy values. For player A, we have
1
g = [v(A)—v(0)]- +[r (AB) — v(B )]-
+[v(AC) —v(C )] + [v(ABC) - b(BC‘H
25 50 35 50 235

Similarly, for players B and C

1
rp = [o(B) - o(®)] +[(AB) — (A
1 1
+[v(BC) — U(C)]g + [v(ABC) — "U(AC)]E
1 1 1 1 325
= 40= 4 65— 4 50= 5— = — =H4.17TK
03 + 6 5 + 5 6 +6 3 5 )
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EXAMPLE 5.16 (cont)

1 1
ve = [bC) ~v(®)5 + R(BC) ~v(B)]g
+[v(AC) — “U(A)]é + [v(ABC) — 'L‘(AB)]%
— 0l 410l +10% s 101 = 2 667k,

3 § 6 3 6

where again K=1000. The Shapley allocation is & = (39.17,54.17,6.67)

compared to the allocation by percentages of (40, 52, 8). Player B will receive
more under the Shapley allocation at the expense of players A and C, who are
owed the least.
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EXAMPLE 5.17

In the beginning of this chapter we presented a typical problem involving small
biotech companies. They can discover a new drug but they don’t have the
resources to manufacture and market it so they have to team up with a large
partner. Let’s say that A is the biotech firm and B and C are the candidate big
pharmaceutical companies. If B or C teams up with A, the big firm will split
$1 billion with A. Here is a possible characteristic function:

v(A) =v(B)=v(C)=v(BC)=0, v(AB) =v(AC) =v(ABC) =1

We will indicate a quicker way to calculate the Shapley allocation when there
are a small number of players. We make a table indicating the value brought
to a coalition by each player on the way to formation of the grand coalition:

Order of arrival  Player A Player B Player C

ABC 0 1 0
ACB 0 0 1
BAC I 0 0
BCA 1 0 0
CAB l 0 0
CBA | 0 0
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EXAM PLE 5 . 17 (cont’d)

The numbers in the table are the amount of value added to a coalition when
that player arrives. For example, if A arrives first, no benefit is added; then, if
B arrives and joins A, player B has added 1 to the coalition AB; finally, when
C arrives (so we have the coalition ABC), C adds no additional value. Since it
1s assumed in the derivation of the Shapley value that each arrival sequence 1s
equally likely we calculate the average benefit brought by each player as the
total benefit brought by each player (the sum of each column), divided by the
total number of possible orders of arrival. We get
raA = é, rp = 6, anda rg = 6

So company A, the discoverer of the drug should be allocated two-thirds of the
$1 billion and the big companies split the remaining third,
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EXAMPLE 5.17 (conta)

It 1s interesting to compare this with the nucleolus. The core, which will be
the nucleolus for this example, is
C0)={rf=(za,xB,1—xza—2B)| —24 <0,—2p5 <0,
—{(#p+1-24—-25)<0,1-2z4—2p <0,
l-z4—-(1—z4—2B) <0,z4 +x5 <1}
=4 (A, T, T) = (1,0,0)}.

This says that A gets the entire $1 billion and the other companies get nothing.
The Shapley value is definitely more realistic.
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Definition 5.3.2

e Shapley vectors can also quickly analyze the winning coalitions
in games where winning or losing is all we care about: who do
we team up with to win. Here are the definitions.

e Definition 5.3.2

Suppose that we are given a normalized characteristic function
v(S) that satisfies that for every S C N, either v(S) = 0 or v(S) = 1. This is called
a simple game. [f v(S) = 1, the coalition S is said to be a winning coalition. [f
v(.S) = 0, the coalition S is said to be a losing coalition. Let

W' = {S eIl | v(S) =1,v(S — i) = 0},

denote the set of coalitions who win with player i and lose without player i.
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Definition 5.3.2 (conta)

* Simple games are very important in voting systems.

— For example, a game in which the coalition with a majority of
members wins has v(S) =1, if |S| > n/2, as the winning coalitions.
Losing coalitions have |S| <n/2 and v(S) = 0. If only unanimous votes
win, then v(N) = 1 is the only winning coalition. Finally, if there is a
certain player who has dictatorial power, say, player 1, then v(S) = 1 if

l1cSandv(S)=0if1 €8S.

* In the case of a simple game for player i we need only
consider coalitions S € 1" for which S is a winning coalition,
but S -/, that is, S without i, is a losing coalition.



Definition 5.3.2 (conta)

* We have denoted that set by WIl. We need only consider S € W
because v(S) - v(S-i) =1 only whenv(S)=1,and v(S-i)=0. In
all other cases v(S) - v(S-i) =0. Hence, the Shapley value for a
simple game is

i = Y [v(S)—v(S—i)

{Sell'}

- Z (IS] = D)Y(n — |S])!
- n!

{Sewi}

(15| = Di(n — |S])!

n!

 The Shapley allocation for player i represents the power that
player i holds in a game. It is also called the Shapley-Shubik
index.



EXAMPLE 5.18

A corporation has four stockholders (with 100 total shares) who all vote their
own individual shares on any major decision. The majority of shares voted
decides an issue. A majority consists of more than 50 shares. Suppose that the
holdings of cach stockholder are as follows:

player | 1 2 3 4
shares ] 10 20 30 40

The winning coalitions, that is, with ©(S) = 1 are

W = {24.34.123.124, 234, 1234}
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EXAMPLE 5.18 (conta)

We find the Shapley allocation. For x;. it follows that W' = {123} because
S = {123} is winning but S — 1 = {23} is losing. Hence

(4-3)13-1)! 1
Ty = =

4! 12

Similarly, W? = {24, 123.234},and so

1 o 1 n 1
SR TR TR
Also, 3 = % and ry; = ﬁ We conclude that the Shapley allocation for
this game is ¥ = (15, 15 15. 13 )-Notice that player 1 has the least power, but
players 2 and 3 have the same power even though player 3 controls 10 more
shares than does player 2. Player 4 has the most power, but a coalition is still

necessary to constitute a majority.
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EXAMPLE 5.18 (conta)

Continue this example, but change the shares as follows

player | 1 2 3 4
shares | 10 30 30 40

Computing the Shapley value as z; = 0,79 = 73 = x4 = %, we see that
player | is completely marginalized as she contributes nothing to any coalition.
She has no power. In addition, player 4’s additional shares over players 2 and
3 provide no advantage over those players since a coalition is essential to carry
a majority 1n any case.
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EXAMPLE 5.19

The United Nations Security Council has 15 members, five of whom are per-
manent (Russia, Great Britain, France, China, and the United States). These
five players have veto power over any resolution. To pass a resolution requires
all five permanent member’s votes and four of the remaining 10 nonpermanent
member’s votes. This is a game with fifteen players, and we want to determine
the Shapley—Shubik index of their power. We label players 1,2,3,4,5 as the
permanent members.

Instead of the natural definition of a winning coalition as one that can pass
a resolution, it is easier to use the definition that a winning coalition is one that
can defeat a resolution. So, for player 1 the winning coalitions are those for
which S € TT', and ©(S) = 1, v(S — 1) = 0; that is, player 1, or player 1 and
any number up to six nonpermanent members can defeat a resolution, so that
the winning coalitions for player 1 is the set

W' = {1,1a,1ab, 1abec, 1abcd, 1abede, 1abedef} .
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EXAMPLE 5.19 (conta)

where the letters denote distinct nonpermanent members. The number of

distinct two-player winning coalitions is 10 = ('),% three-player coalitions is

1
(12“), four-player coalitions is (13“) , and so on, and each of these coalitions will

have the same coefficients in the Shapley value. So we get

(]!14!Jr 10 1!13!Jr 10 2!12!+ 5 10\ 6!8!
r =
T 1) 15! 2 ) 15! 6/ 15!
We can use Maple to give us the result with this command:
> tot:=0;
> for k from 0 to 6 do
tot:=tot+binomial (10,k)*k!*(14-k)!/15!

end do:
> print(tot);

We get r1 = 2412415 = 0.1963. Obviously, it must also be true that xo =

r3 = x4 — x5 = 0.19623. The five permanent members have a total power
of 5 x 0.19623 = 0.9812 or 98.12% of the power, while the nonpermanent

members have g = -+ = 15 = 0.0019 or 0.19% each, or a total power of
1.88%.
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EXAMPLE 5.20

In this example ® we show how cooperative game theory can determine a fair
allocation of taxes to a community. For simplicity, assume that there are only
four households and that the community requires expenditures of $100,000.
The question is how to allocate the cost of the $!00,000 among the four
households.

As in most communities, we consider the wealth of the households as
represented by the value of their property. Suppose the wealth of household ¢
is w;. Our four households have specific wealth values

wy = 75, wy = 175, wsy = 200, wy = 300,

again with units in thousands of dollars. In addition, suppose that there is a
cap on the amount that each household will have to pay (on the basis of age,
income, or some other factors) that is independent of the value of their property
value. In our case we take the maximum amount each of the four households
will be required to pay as

wy = 25, up = 30, ug = 20, uy = 80.
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EXAMPLE 5.20 (conta)

What is the fair allocation of expenses to each household?
Let’s consider the general problem first. Define the variables

T Total costs of community

U, Maximum amount 7 will have to pay
w, Net worth of player 2

2i Amount player ¢ will have to pay

u; — z; | Surplus of the cap over the assessment

The quantity u; — 2z, is the difference between the maximum amount that
household i would ever have to pay and the amount household 7 actually pays.
[t represents the amount household i does not have to pay.

We will assume that the total wealth of all the players is greater than 7,
and that the total amount that the players are willing (or are required) to pay 1s
greater than 7', but the total actual amount that the players will have to pay is
exactly T":

T

Y w; > T, i:u.i > T, and Xn: 2 =T. (5.3.1)
1=1 =1

1=1
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EXAM PLE 5 20 (cont’d)

This makes sense because “you can’t squeeze blood out of a turnip.” Here is
the characteristic function we will use:

o(S) =

§

f

\

max E u;, — 1,0 if ) cqwi > T
i€S

0 if Z?ES w; < T.

In other words, ©(.5) = 0 in two cases: (1) if the total wealth of the members
of coalition S is less than the total cost, Zies w; < T, or (2) if the total
maximum amount coalition S is required to pay is less than 7', 3 . - cu; < T.
[f a coalition S cannot afford the expenditure T', then the characteristic function
of that coalition is zero.

The Shapley value involves the expression v(.5) — v(S — j) in each term.

Only the terms with v(S) — v(S — j) > 0 need to be considered.
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EXAMPLE 5.20 (conta)

Suppose first that the coalition S and player j € S satisfies v(S) >
0 and ©(S — j) > 0. That means the coalition S and the coalition S without
player j can finance the community. We compute

1?(5)—:?(5-,)’)-—‘Zuf-—T— Z u, — T | =uj.
i€S i€S.i#]

Next, suppose that the coalition S can finance the community, but not
without j : v(S) > 0,v(S — j) = 0. Then

o(S)—v(S—j)=> u—T.

teS
Summarizing the cases, we have
( if (S) > 0,0(5 —j) > 0;
v(S) —v(S—j)=19 2eswi—T ifv(S)>0v(5~7) =0
[ O if v(S)=wv(S—7)=0.
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EXAMPLE 5.20 (conta)

Notice that if 7 € S and v(S — j) > 0, then automatically v(S) > 0. We are
ready to compute the Shapley allocation. For player j = 1,....n, we have,

(1S] — Dl(n — [S])!

n!

o= > [(S) —u(S - j)]

[{Selli}

N IR R}
o J

n!
{SjeS,v(S—7)>0}

A\ (IS = D —|S!
. ¥ (Zw—f) 51~ itn - |9

{S|7€S.v(S)>0.0(S—j)=0} \i€S

By our definition of the characteristic function for this problem, the allocation
x; is the portion of the surplus > u; — 7" > 0 that will be assessed to household
j- Consequently, the amount player j will be billed is actually z; = u; — ;.
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EXAMPLE 5.20 (conta)

For the four-person problem data above we have T' = 100, Y w; = 750 >
100, Z,— u; = 155 > 100, so all our assumptions in (5.3.1) are verified. Re-
member that the units are in thousands of dollars. Then we have

0,

v(i) =0, v(12) = v(13) = v(23) = 0, v(14) = 5,v(24) = 10.v(34)
0(123) = 0, v(134) = 25, v(234) = 30, v(124) = 35, v(1234) = 55.

For example, v(134) = max(u; + ug + uy — 100,0) = 125 — 100 = 25. We
compute

U Z m(S Al Gl 1)L

4!
(S| 1€8,2(5~1)>0}

—\ US[ = Dl(n —|S|)!
+ Z (Z Ui = T) n!

{S|1€8.0(5)>0,0(S—1)=0} \i€S
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EXAMPLE 5.20 (conta)

A 3101
BT TR
112! 211!
+T ([uy + ug — 100]) + T[ul + ug + uyg — 100]
65
6

The first term comes from coalition S = 124: the second term, from coalition
S = 1234: the third term comes from coalition S = 14; and the last term from
coalition S = 134.

As a result, the amount player 1 will be billed will be z; — u; — 2, =

Al = = . ®
25 — ‘;—)’ = % thousand dollars. In a similar way we calculate
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EXAM PLE 5 20 (cont’d)

so that the actual bill to each player will be

]
-y
(o

21 =25 — %2 = 14.167,
zo =30 — 3 = 16.667.
z3 =20 — 2 = 11.667.
z4 = 80 — 4 = BT.5.
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EXAMPLE 5.20 (conta)

For comparison purposes it is not too difficult to calculate the nucleolus for
this game to be (‘-%"— 15, 10, J—;) so that the payments using the nucleolus will

be
21 =252 =2 =125,
zp =30 — 15 = 15,
2;220—10;—1(1
" 35 __ 125 _ o
24 =80 — P =122 =62.5.

There is yet a third solution, the straightforward solution that assesses the
amount to each player in proportion to each household’s maximum payment
to the total assessment. For example, w; /() u;) = 25/155 = 0.1613 and so
player 1 could be assessed the amount 0.1613 x 100 = 16.13.
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Dummy and Carriers

 Aplayeriisadummy if for any coalition Sin which 1¢S5, we
have
v(S Ui) = v(9).

So dummy player i contributes nothing to any coalition. The
players who are not dummies are called the carriers of the
game. Let's define C = set of carriers.



Dummy and Carriers (contq)

* Q@Given a characteristic function v, we should get an allocation
as a function of v, ©(v) = (p1(v),--.,¢n(v)) , where »i(v) will be
the allocation or worth or value of player i in the game, and
this function ¢ should satisfy the following properties:

1. v(N)=3_"_ vi(v). (Group rationality).

2. If players i and j satisfy v(SUi) = v(SUj) forany coalitionwithi ¢ S,j € .S,
then ¢, (v) = p;(v). If i and j provide the same benefit, they should have the
same worth.

3. If i is a dummy player, ¢, (v) = 0. Dummies should be worth nothing.

4. If vy and v, are two characteristic functions, then (v, +v2) = @(v1)+ @(v2).
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Dummy and Carriers (contq)

— |t essentially says that the allocation to a player using the sum of
characteristic functions should be the sum of the allocations
corresponding to each characteristic function.

 There is one and only one function ¥ that satisfies them! It is
given by p(v) = (p1(v), ..., 9n(v)), where

— DNIN| = | S
eilo) = Y 0S) - ots — g EEEE TR 1
{Sell*}

This is the only function satisfying the properties, and, sure
enough, it is the Shapley value.



5.4 Bargaining



Bargaining

* In this section we will introduce a new type of cooperative
game in which the players bargain to improve both of their
payoffs. Let us start with a simple example to illustrate the
benefits of bargaining and cooperation.

e Consider the prisoner's dilemma two-player nonzero sum
game with bimatrix

L I1,
L| (21) (-1,-1)
I | (—-1,-1)  (1,2)

“




Bargaining (conta)

* You can easily check that there are three Nash equilibria given
by Xi=(0.1) =Y. X, = (1,0) = Yz.and X5 = (£, 2).¥; = (£.2).Now
consider Figure 5.8.

Payoffs with and without cooperation

203
/]

Figure 5.8 Payoff I versus payoff II for the prisoner’s dilemma.
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Bargaining (conta)

— The points represent the possible pairs of pay offs to each
(Ev(x,y), E2(x,y)) given by

EMHUJ——(-M—w)f‘( : ) Es(z.y) -(,1:.1-_:*)8( : )

-y l —y

— It was generated with the following Maple commands:

with(plots):with(plottools) :with(LinearAlgebra):
A:=Matrix([(2,-1],(-1,1]1);B:=Matrix([[1,-1],[-1,2]1]);
f:=(x,y)->expand(Transpose (<x,1-x>) .A.<y,1-y>);
g:=(x,y)->expand(Transpose (<x,1-x>) .B.<y,1-y>);
points:={seq(seq([f(x,y),g(x,y)],x=0..1,0.056),y=0..1,0.05)}:
pure:=([[2,1],[-1,-1],[-1,-1],[1,2]11);

pp:=pointplot (points);

pq:=polygon(pure, color=yellow) ;

display(pq,pp,title="Payoffs with and without cooperation");

A4

VoW OV OV VYV YV
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Bargaining (conta)

— The horizontal axis (abscissa) is the payoff to player |, and the vertical

axis (ordinate) is the payoff to player Il. Any point in the parabolic
region is achievable forasome 0<x<1,0<y<1.

— The parabola is given by the implicit equation
5(E,—FE2)?—2(E,+FEx))+1=0

If the players play pure strategies, the payoff to each player will be at one of the

vertices. The pure Nash equilibria yield the payoff pairs (£, = 1, £, = 2) and
(Fy =2,Fy =1)

« The mixed Nash point gives the payoff pair (E1 = . E> = 1) which is strictly
inside the region of points, called the noncooperative payoff set.



Bargaining (conta)

* Now, if the players do not cooperate, they will achieve one of
two possibilities:
1. The vertices of the figure, if they play pure strategies.

2. Any pointin the region of points bounded by the two lines and the
parabola, if they play mixed strategies.

— The portion of the triangle outside the parabolic region is not
achievable simply by the players using mixed strategies. However, if
the players agree to cooperate, then any point on the boundary of
the triangle, the entire shaded region, including the boundary of the
region, are achievable payoffs.



Bargaining (conta)

— Player | wants a payoff as large as possible and thus as far to the right
on the triangle as possible. Player Il wants to go as high on the triangle
as possible. So player | wants to get the payoff at (2,1), and player Il
wants the payoff at (1,2), but this is possible if and only if the opposing
player agrees to play the correct strategy. In addition, it seems that
nobody wants to play the mixed Nash equilibrium because they can
both do better, but they have to cooperate to achieve a higher payoff.



EXAMPLE 5.21

I.

-

e 11,
L) (1.4) (=2,1) |

L | (0,-2) (3,1) (

)
)

b= —
= O

— We will draw the pure payoff points of the game as the vertices of the
graph and connect the pure payoffs with straight lines, as in Figure 5.9.

— The vertices of the polygon are the payoffs from the matrix. The solid
lines connect the pure payoffs.

— The dotted lines extend the region of payoffs to those payoffs that
could be achieved if both players cooperate.



EXAMPLE 5.21

— Suppose that player | always chooses row 2,1, , and player Il plays the
mixed strategy Y = (y1.y2.y3), where y; = 0,9y + y2 + y3 = L,
— The expected payoff tolis |
Fi(2,Y) =0y + 3y 5 3.

— The expected payoff to Il is

1
E2(2};) = ﬁ2y| +4- lyg + 5 y3.

— Hence
1 1

(En, E2) = y1(0,-2) +y2(3,1) 4+ y3 (2- -2—) ;

* which, as a linear combination of the three points (0,-2), (3,1), and (1,1), is in the
convex hull of these three points.
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EXAM PLE 5 2 1 (cont’d)

Payolffs if Players Cooperate
Player Il

Player |

RRRARRSRRRRNRRARARR
1 2 3 4

Figure 5.9 Achievable payoffs with cooperation.
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EXAM PLE 5 2 1 (cont’d)

— This means that if players | and Il can agree that player | will always
play row 2, then player Il can choose a Y = (y1.y2.y3) at the payoff
pair to each player will be in the triangle bounded by the lower dotted
line in Figure 5.9 and the lines connecting (0,-2) with (1,1) with (3,1).

— The conclusion is that any point in the convex hull of all the payoff
points is achievable if the players agree to cooperate.



Definition 5.4.1

* The entire triangle in Figure 5.9 is called the feasible set for
the problem. The precise definition in general is as follows.

e Definition 5.4.1

The feasible set is the convex hull of all the payoff points corre-
sponding to pure strategies of the players.

— The objective of player | in Example 5.21 is to obtain a payoff as far to
the right as possible in Figure 5.9, and the objective of player Il is to
obtain a payoff as far up as possible in Figure 5.9. Player I’s ideal payoff
is at the point (3,1), but that is attainable only if Il agrees to play Il,.



Definition 5.4.1 (conta)

— Why would he do that? Similarly, Il would do best at (1,4), which will
happen only if | plays |, and why would she do that? There is an
incentive for the players to reach a compromise agreement in which
they would agree to play in such a way so as to obtain a payoff along
the line connecting (1,4) and (3,1).

— That portion of the boundary is known as the Pareto-optimal
boundary because it is the edge of the set and has the property that if
either player tries to do better (say, player | tries to move further right),
then the other player will do worse (player || must move down to
remain feasible).



Definition 5.4.2

e Definition 5.4.2

The Pareto-optimal boundary of the feasible set is the set of payoff
points in which no player can improve his payoff without at least one other player
decreasing her payoff.

— The point of this discussion is that there is an incentive for the players
to cooperate and try to reach an agreement that will benefit both

players. The result will always be a payoff pair occuring on the Pareto-
optimal boundary of the feasible set.
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Definition 5.4.3

* In any bargaining problem there is always the possibility that
negotiations will fail. Hence, each player must know what the
payoff would be if there were no bargaining. This leads us to
the next definition.

e Definition 5.4.3

The status quo payoff point, or safety point, or security point
in a two-person game is the pair of payoffs (u*,v*) that each player can achieve if
there is no cooperation between the players.

— Recall that the safety levels we used in previous sections were defined
by the pair (value(A), value(BT)).
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Definition 5.4.3 (conta)

— In the context of bargaining it is simply a noncooperative payoff to
each player if no cooperation takes place.

* For most problems considered in this section, the status quo point will be taken to
be the values of the zero sum games associated with each player, because those
values can be guaranteed to be achievable, no matter what the other player does.



EXAMPLE 5.22

— We will determine the security point for each player in Example 5.21,
and take it to be the value of the zero sum games for each player

— Consider the payoff matrix for player I:

1 -2 1
A—[U 3 ]

2
o(4) = |
The optimal strategies for player Il: Y = (

fp by
.

.0)

b | =
o e e
p o —

The optimal strategies for player1: X = (



EXAM PLE 5 22 (cont’d)

— Next we consider the payoff matrix for player |

4 =92
BT — |1 1 .

¢ 1

2 3

For this matrix »(B*) =1, and we have a saddle point at row 1 column
2.

— We conclude that the status quo point for this game is (5. 1) since that
is the guaranteed payoff to each player without cooperation or
nego-tiation. This means that any bargaining must begin with the
guaranteed payoff pair (5.1).
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EXAM PLE 5 22 (cont’d)

Possible Payoffs if Players Cooperate
Player II

4 /\
AR

safety point

Player [

Figure 5.10 The reduced feasible set; safety at (5, 1).

Q2
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EXAM PLE 5 22 (cont’d)

— This cuts off the feasible set as in Figure 5.10. The new feasible of the

points in Figure 5.10 above and to the right of the lines emanating
from the security point (1.1).

— Notice that in this problem the Pareto-optimal boundary is the line
connect-ing (1,4) and (3,1) because no player can get a bigger payoff
on this line without forcing the other player to get a smaller payoff.

 The question now is to find the cooperative, negotiated best
payoff for each player. How does cooperation help?

— | will play row 11 half the time and row 12 half the time as long as ||
plays column II; half the time and column 11, half the time.



EXAM PLE 5 22 (cont’d)

— If they agree to play this way, they will get 5(1.4) + 5(3.1) = (2, 2).
— So player | gets 2> 5 and player Il gets 3 > 1 a big improvement for
each player over his or her own individual safety level. So, they

definitely have an incentive to cooperate.



EXAMPLE 5.23

— The bimatrix is

| 11 I,
I (2,17) (—10, —22)
I | (=19, -7) (17,2)

the safety level is given by the point
(value(A), value(B')) = (—T é) :

the optimal strategies

[

Xa=031.Y1=(5 15)-and Xg = (3,3).YB = (55. 1o

e | =

Negotiations start from the safety point.
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EXAM PLE 5 23 (cont’d)

— Figure 5.11 shows the safety point and the associated feasible payoff
pairs above and to the right of the dark lines. The shaded region in
Figure 5.11 is the convex hull of the pure payoffs, namely, the feasible
set, and is the set of all possible negotiated payoffs.

— The region of dot points is the set of noncooperative payoff pairs if we
consider the use of all possible mixed strategies.

— A negotiated set of payoffs will benefit both players and will be on the
line farthest to the right, which is the Pareto-optimal boundary.



EXAM PLE 5 23 (cont’d)

— Player | would love to get (17, 2), while player Il would love to get
(2,17). That probably won't occur but they could negotiate a point
along the line connecting these two points and compromise on
obtaining, say, the midpoint

— So they could negotiate to get 9.5 each if they agree that each player
would use the pure strategies X = (1,0) = Y half the time and play pure
strategies X = (0,1) = Y exactly half the time. They have an incentive to
cooperate.



EXAMPLE 5.23 (conta)

Payoffs with and without cooperation

10+

safety point at
(-13/4,-5/2)

%] [
Sr—

Figure 5.11 Achievable payoff pairs with cooperation; safety point = ('—4-‘, —
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5.4.1 The Nash Model with Security Point



The Nash Model with Security Point

 We start with any old security status quo point (u*,v*) for a
two-player cooperative game with matrices A, B. This leads to
a feasible set of possible negotiated outcomes depending on
the point we start from (u",v"). This may be the safety
point u* = value(A),v* = value(BT) , or not. For any given such
point and feasible set S, we are looking for a negotiated
outcome, call it (&, V) . This point will depend on (u*,v*) and
the set S, so we may write (u.7) = f(S,u",v").



The Nash Model with Security Point (conta)

 The question is how to determine the point (%, 7)? John Nash

proposed the following requirements for the point to be a
negotiated solution:

e Axiom 1. We must have 7 > u™ and ¥ > v*. Each player must get at least the
status quo point.

e Axiom 2. The point (7, v) € S, that is, it must be a feasible point.

e Axiom 3. If (u, v) is any point in S, so that u > & and v > T, then it must be
the case that u = u, v = U. In other words, there is no other point in .S, where
both players receive more. This is Pareto-optimality.

e Axiom 4. If (z,7) € T C S and (w,v) = f(T,u*,v*) is the solution to the
bargaining problem with feasible set 7', then for the larger feasible set S, either
(m,v) = f(S,u”,v") is the bargaining solution for S, or the actual bargaining
solution for S isin S — 7". We are assuming that the security point is the same
for T'and S. So, if we have more alternatives, the new negotiated position can’t
be one of the old possibilities.
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The Nash Model with Security Point (conta)

e Axiom 5. If 7' is an affine transformation of S, 7" = aS + b = ¢(S) and
(u,v) = f(S,u™,v") is the bargaining solution of S with security point
(u*,v*), then (a@ + b,av + b) = f(T,au™ + b,av* + b) is the bargain-
ing solution associated with 7" and security point (au™ + b,av* + b). This
says that the solution will not depend on the scale or units used in measuring
payoffs.

e Axiom 6. If the game is symmetric with respect to the players, then so is the

#*

bargaining solution. In other words, if (%, 7) = f(S,u*,v*) and (i) u* = v*,
and (i1) (u,v) € S = (v,u) € S, thenu = 7. So, if the players are essentially
interchangeable they should get the same negotiated payoff.

 The amazing thing that Nash proved is that if we assume
these axioms, there is one and only one solution of the
bargaining problem.
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Theorem 5.4.4

e Theorem 5.4.4

Let the set of feasible points for a bargaining game be nonempty
and convex, and let (u*,v*) € S be the security point. Consider the nonlinear
programming problem

Maximize g(u,v) := (v — u*)(v — v*)
subject to (u,v) € S,u > u*,v > v,

Assume that there is at least one point (u,v) € S withu > u*,v > v*. Then there
exists one and only one point (u,v) € S that solves this problem, and this point is
the unique solution of the bargaining problem (w,v) = f(S.u*,v*) that satisfies the
axioms 1 — 6. If, in addition, the game satisfies the symmetry assumption, then the
conclusion of axiom 6 tells us thatuw = v
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Theorem 5.4.4 (cont)

Proof. We will only sketch a part of the proof and skip the rest.
1. Existence. Define the function g(u, v) = (u — u*)(v — v*). The set

§* = {(wv) € S |uzutv>v*)

is convex, closed, and bounded. Since g : S* — R is continuous, a theorem of
analysis (any continuous function on a closed and bounded set achieves a maximum
and a minimum on the set) guarantees that g has a maximum at some point (7, 7) €
S*. By assumption there is at least one feasible point with © > u*, v > v*. For this
point g(u, v) > 0 and so the maximum of g over S* must be > 0 and therefore does
not occur at the safety points u = u* or v = v”*.
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Theorem 5.4.4 (cont)

2. Uniqueness. Suppoqe the maximum of g occurs at two points 0 < M =
g(u',v") = g(u,0"). If u' = 4", then

g("t'.!'.-’-, ’UI) o (ur o ’UJ*)(U’ o 'U*) — g(u”,v") . (?L” o U*)(’UH o "U*),

so that dividing out v’ —«*, implies that v" = v” also. So we may as well assume that
' < u” and thatimplies v" > v because (v" —u*)(v' —v*) = (" —u*) (" —v*) =
M > 0 so that

u” —u* v —v*
= !
= >1 = vV —0v* >0 —0vF = 2 >v".

u — u* v’ — vt
Set (u,v) = 2 (v, v")+3(u" . v"). Since S is convex, (v, v) € Sandu > u*, v > v*.

1
2
So (u,v) € S*. Some simple algebra shows that

P aM ("
g(u,v) = M + (' —u L(U ) > M, sinceu” > u',v" <.

This contradicts the fact that (u’, v") provides a maximum for g over S* and so the
maximum point must be unique.
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Theorem 5.4.4 (cont)

3. Pareto-optimality. We show that the solution of the nonlinear program, say,
(u,v), is Pareto-optimal. If it is not Pareto-optimal, then there must be another
feasible point (v, v') € S for which either v’ > wand v' > v, orv’ > vand v’ > 1.
We may as well assume the first possibility. Since uw > u*, 7 > v*, we then have
u' > u*and v’ > v* and so g(u’, ") > 0. Next, we have

glu' . v') = (v —u")(0 =) > (u—u*)(V—v) = g(u.v).

But this contradicts the fact that (7. 7)) maximizes g over the feasible set. Hence
(7.7) 1s Pareto-optimal.

Chih-Wen Chang @ NCKU Game Theory, Ch5 202



EXAMPLE 5.24

— In an earlier example we considered the game with bimatrix

| ”| “3
[ (2,17) (—10,-22)
I | (=19, — 9)

.
-
-
[

The safety levels u* value(A) = =1 ov* = value(BT) = -2,

|

— Figure 5.12 for this problem shows the safety point and the associated
feasible payoff pairs above and to the right.

— We need the equation of the lines forming the Pareto-optimal
boundary.

In this example it is simply y = —y + 19, which is the line with negative
slope to the right of the safety point. It is the only place where both
players cannot simultaneously improve their payoffs.



EXAM P LE 5 . 24 (cont’d)

Payoffs with and without coopcration

(2,17)

Pareto optimal
boundary

' sa'fcty point at
(-13/4.-5/2)

Figure 5.12 Pareto-optimal boundary is line connecting (2, 17) and (17,2).
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EXAM PLE 524 (cont’d)

— To find the bargaining solution for this problem, we have to solve the
nonlinear programming problem

. 13 5}
Maximize (u. + 4) (v — 2)

13 5]
subjectton > ——, v > ——=, v<-—-u+19
4 2
— The Maple commands used to solve this are
> with(Optimization):
> NLPSolve((u+13/4)*(v+5/2),
{u>=-13/4,v>=-5/2,v<=-u+19} ,maximize) ;

This gives the optimal bargained payoff pair

(=5 =912575 = 2 = 9.875). The maximum of g is g(%,7) = 153.14

, Which we do not really use or need.
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EXAM PLE 524 (cont’d)

— The bargained payoff to player l is 7 = 9.125 and the bargained payoff
to player Il is 7 = 9.875 . We do not get the point we expected, namely,
(9.5,9.5); that is due to the fact that the security point is not
symmetric. Player Il has a small advantage.

— You can see in the Maple generated Figure 5.13 that the solution of
the problem occurs just where the level curves, or contours of g are
tangent to the boundary of the feasible set. Since the function g has
concave up contours and the feasible set is convex, this must occur at
exactly one point.



EXAM P LE 5 . 24 (cont’d)

Figure 5.13  Bargaining solution where curves just touch Pareto boundary at (9.125, 9.875).
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EXAM P LE 5 . 24 (cont’d)

— The Maple commands used to get Figure 5.13 are as follows.

v

fo=(x,y)->(x+13/4)*(y+5/2) ;
> genst:={x >=-13/4,y>=-5/2,y<=-x+19,
y<=24/21*x+14 .71 ,y>=24/27%x-15.22};
> with(plots):with(plottools):
> cp:=contourplot (f(x,y),x=0..25,y=0..25,
axes=normal,thickness=2,contours=4) :
> ineq:=inequal( gcnst,x=-4..25, y=-3..25,
optionsfeasible=(color=yellow),
optionsopen=(color=blue,thickness=2),
optionsclosed=(color=green, thickness=2),
optionsexcluded=(color=white),labels=[x,y] ):
> pointp:=pointplot ([73/8,79/8] ,thickness=5,symbol=circle):
> t1:=textplot([16,13,"(73/8,79/8)"],align={BELOW,LEFT});
> display3d(cp,ineq,tl,pointp,title="Bargaining Solution",
labels=[‘u‘,‘v‘] );
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EXAM PLE 524 (cont’d)

— Finally, knowing that the optimal point must occur on the Pareto-
optimal bound-ary means we could solve the nonlinear programming
problem by calculus. We want to maximize

13 N
flu) = glu,—u+19) = (u+ T)(_“ + 19 + %) on the interval 2 < u < 17.

This is an elementary calculus maximization problem.
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EXAMPLE 5.25

— We will work through another example from scratch. We start with the
follow-ing bimatrix:

I 11,
[, (1,3) (—4, —2)
I» | (—1,-3) (2,1)
— 1. Find the security point. To begin we find the values of the associated
matrices
B 1 —4 T 3 =3
ST B |
Then, value(A) = —f and value(BT) = —]; Hence the security point is

(0" 10) = (—4-8).
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EXAM PLE 5 25 (cont’d)

— 2. Find the feasible set. The feasible set, taking into account the security
point, is

_ 1 1
S* — {(“-*. 1;) | u > _i" v = —g, 0 <10+ d5u — 5’U 0 <10+ u + 3uv,

0<dH—-—4u+3v,0<H—2u— ‘U}.

— 3. Set up and solve the nonlinear programming problem. The nonlinear
programming problem is then

1 1
Maximize g(u,v) = ('u. - 1) (u + .i)

subject to (u.v) € S™.

Maple gives us the solution 7 = 22 = 1.208,7 = 21 = 2.583. If we
look at Figure 5.14 for S*, we see that the Pareto-optimal boundary is the line

v=—-2u+5,1<u <2
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EXAM PLE 5 25 (cont’d)

— 4. Find the strategies giving the negotiated solution. How should the
players cooperate in order to achieve the bargained solutions we just obtained?
To find out, the only points in the bimatrix that are of interest are the endpoints
of the Pareto-optimal boundary, namely, (1,3) and (2, 1). So the cooperation
must be a linear combination of the strategies yielding these payoffs. Solve

(29 31

o1’ 12) = A(1,3) + (1= A)(2,1),

to get A = % This says that (I.II) must agree to play (row l,col 1) with
probability ‘13—2 and (row 2, col 2) with probability Z%
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EXAM PLE 5 25 (cont’d)

u=29/24, v=31/12

v=3-2u
Pareto optimal

boundary

(-1/4,-1/3)

Figure 5.14  Security point (—3,—%), Pareto boundary v = —2u + 5, solution
(1.208, 2.583).
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EXAMPLE 5.26

— Suppose that two persons are given $1000, which they can split if they
can agree on how to split it. If they cannot agree they each get
nothing.

— One player is rich, so her payoff function is
mujrg,0§ma1mu

because the receipt of more money will not mean that much.
— The other player is poor, so his utility function is
us(y) =In(y +1) .0 <y < 1000,

because small amounts of money mean a lot but the money has less
and less impact as he gets more but no more than $ 1000.



EXAMPLE 5.26

— We want to find the bargained solution. The safety points are taken as
(0,0) because that is what they get if they can't agree on a split.

— The feasible set is

S = {(z,y) | 0 < z,y <1000,z +y < 1000}



EXAM PLE 5 26 (cont’d)

Figure 5.15 illustrates the feasible set and the contours of the objective

function.
500 4
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Bargaining Solution

Figure 5.15
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Rich and poor split $1000: solution at (836.91, 163.09).
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EXAM PLE 5 26 (cont’d)

— The solution is obtained using Maple as follows.

> fi=(x,y)->(x/2)*(1n(1+y));

> cnst:={0<=x, x<=1000, 0 <=y, y<=1000, x+y <=1000};
> with(Optimization):

> NLPSolve(f(x,y),cnst,assume=nonnegative,maximize) ;

— Maple tells us that the maximum is achieved at x = 836.91, y = 163.09,
so the poor man gets $163 while the rich woman gets $837. Figure
5.15 shows the feasible set as well as several level curves of f(x, y) = k.

— The optimal solution is obtained by increasing k until the curve is
tangent to the Pareto-optimal boundary.

* That occurs here at the point (836.91,163.09). The actual value of the maximum is
of no interest to us.
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5.4.2 Threats Problems



Threats

Negotiations of the type considered in the previous section do
not take into account the relative strength of the positions of
the players in the negotiations.

As mentioned earlier, a player may be able to force the
opposing player to play a certain strategy by threatening to
use a strategy that will be very detrimental for the opponent.
These types of threats will change the bargaining solution.



EXAMPLE 5.27

— We will consider the two-person game with bimatrix
Lt Il

L | (2,4 (-3,-10)

I | (—8,—-2)  (10.1)

— Player I's and II’'s payoff matrix are

[ 2 -3 51 4 -2
"1“{—8 10]B _{—10 1]

— value(A) = —%?UGEUG(BT) - _"}‘{%

so the security point is

(W' v*) = (= . —12).
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EXAM PLE 5 27 (cont’d)

— With this security point we solve the problem

4 16
Maximi: ) = | u+ — v+ —
aximize g(u, v) (u 23) (! + 1?)

biect t . ! - 16 >11 97
subjec 2 -,V 2 -,V 2 U — o,
subject to u = 53 v 2 T (g 13.!1 3
3 38 6 28
v ——u+ —, v < —u+ —.
N 8 — 10 10

In the usual way we get the solution @ = 7.501.7 = 1.937.

— This is achieved by players | and |l agreeing to play the pure strategies
(I,I1;) 31.2% of the time and pure strategies (I2,115) 68.8% of the time.

— Figure 5.16 below is a three-dimensional diagram of the contours of
g(u, v) over the shaded feasible set. The dot shown on the Pareto
boundary is the solution to our problem.
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EXAM PLE 5 27 (cont’d)

Figure 5.16 The feasible set and level curves in three dimensions. Solution is at (7.5, 1.93)
4 16

for security point (—ﬁ, —ﬁ) .
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Finding the Threat Strategies

* Inathreat game we replace the security levels (u*, v*), which
we have so far taken to be the value of the associated
games u" = value(A),v* = value(BT) | with the expected
payoffs to each player if threat strategies are used.

e Suppose that in the bimatrix game player | has a threat
strategy X, and player Il has a threat strategy Y;. The new
status quo or security point will be the expected payoffs to
the players if they both use their threat strategies:

ut = E4(X,.Y;) = X, AY;" and v* = E(X,,Y:) = X,BY;".



Finding the Threat Strategies (conta)

 Then we return to the cooperative bargaining game and apply
the same procedure as before but with the new threat
security point; that is, we seek to

Maximize g(u,v) = (v — X, AY," ) (v — X, BY;!)
subject to (i,v) € S, u > X, AV, v > X, BY;".



Finding the Threat Strategies (conta)

* Inthe Example 5.27
— Let's suppose that the threat strategies are X, = (0.1)and ¥, —(1.0)
— Then the expected payoffs give us the safety point

u* = X, T AY, = —8and v* = X, BY,! = =2

— Changing to this security point increases the size of the feasible set

and changes the objective functionto ¢(u.v) = (v +8)(v+2) .

— When we solved this example with the security point (— == —% ) we

23
obtained the payoffs 7.501 for player I, and 1.937 for player Il. The
solution of the threat problemis @ = 5 < 7.501.7 = 2.875 > 1.937.

* This reflects the fact that player Il has a credible threat and therefore
should get more than if we ignore the threat.



Finding the Threat Strategies (conta)

Figure 5.17 Feasible set with security point (—8, —2) using threat strategies.
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Finding the Threat Strategies (conta)

 The question now is how to pick the threat strategies? How
do we know in the previous example that the threat strategies
we chose were the best ones? We continue our example to
see how to solve this problem.

— We look for a different security point associated with threats that we
call the optimal threat security point.



Finding the Threat Strategies (conta)

 The Pareto-optimal boundary for our problem is the line
- 28 . . 3
segmen , = 2y + 2.2 < u < 10 with slope m, = —¢

— Consider now a line with slope —m, = 2 through any possible threat

8

security point in the feasible set (u'.v") .

— Referring to Figure 5.18, the line will intersect the Pareto-optimal
boundary line segment at some possible negotiated solution (z.7) .

— The line with slope —m, through (u'.v") , whatever the point is, has
the equation

t A
1 — U = —'”'.F’-p'.i"t'f, — ’H.tf].



Finding the Threat Strategies (conta)

Slopem_p

Jneat bargain solution

Parewo Optimal boundary

threat security poini

Figure 5.18 Lines (through possible threat securily poinls.
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Finding the Threat Strategies (conta)

— The equation of the Pareto-optimal boundary line is

3 38
v=mpu+b=—-u+ —,

8 8
so the intersection point of the two lines will be at the coordinates

:IL_ j— p—
2my, 6

1 —(3u' — &) 4 38
U= E(mput +ot +b) = T .

Now, remember that we are trying to find the best threat strategies to
use, but the primary objective of the players is to maximize their
payoffs w, v .

my ut +vt —b  3ul — 8v! + 38
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Finding the Threat Strategies (conta)

— Player | will maximize 7 if she chooses threat strategies to maximize
the quantity m,, u! + o' = —g ut + vt

— Player Il will maximize 7 if he chooses threat strategies to minimize
the same quantity m, u" + v* because the Pareto-optimal boundary
will have m, < 0,0 the sign of the term multiplying u! will be
oppositein wand 7 .



Summary Approach for Bargaining with Threat
Strategies

 Here is the general procedure for finding «*,v* and the
optimal threat strategies as well as the solution of the
bargaining game:

1. Identify the Pareto-optimal boundary of the feasible payoff set and find the
slope of that line, call it m,. This slope should be < 0.

2. Construct the new matrix for a zero sum game
—mpu' —v' = —m, (X AY]") — Xy BY," = X(-m,A - B)Y,"

with matrix —m,A — B.
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Summary Approach for Bargaining with Threat
Strategies (conta)

3. Find the optimal strategies X;, Y; for that game and compute u! = X, AY,"
and v! = X, BY,". This (u’, v!) is the threat security point to be used to solve
the bargaining problem.

4. Once we know (u’,v"), we may use the following formulas for (@, 7) :

_ mput+ v-—b _ 1 ; , _
I , U==(mpu +v +0b). 54.1
I 21y, 2( P ) ( )

Alternatively, we may apply the nonlinear programming method with security
point (u*, v') to find (7, 7).
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EXAMPLE 5.27, continued

— Carrying out these steps for our example, m,, = —2,b = =2, we find
: 26 71
LJ, — 1" LS
_|T® B
sA-B=1_| =
8

!-’(Mf“.f‘(%f’i — B) = —1

There is a saddle point at the second row and first column, optimal
threat strategies X = (0,1).Y; = (1,0),

ut = X;AY," = -8, and v! = X;BY,T = -2
— Once we know that, we can use the formulas above to get

— —5(=8) + (=2) — 5 _ "
2(—3)
1, 3 38
—(—Z(— —2 — ) = 2.875.

=l
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EXAMPLE 5.27, continued (conta)

— This matches with our previous solution in which we simply took the
threat security point to be (-8, -2). Now we see that (-8, -2) is indeed
the optimal threat security point.



EXAMPLE 5.28

e Consider the cooperative game with bimatrix

“

I ’ (—1,—-1) (1,1)

I2 | (2,-2) (—2.2)

L I

— The individual matrices are

-1 1 -1 1
A:[ 22}? B‘[z 2]

— wvalue(A) = 0,value(B*") =1

— The security point for this game is at (u*,v*) = (0, 1)
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EXAM PLE 5 28 (cont’d)

— The problem we then need to solve is

Maximize u(v — 1),
subject to (u,v) € S™,

1 1

§*={(uv) [v < (=3)u+ g0 < —Butdu>0v=1}

b =
Ty ~1
p—

— The solution of this problem is at the unique point (% 7) = (3.
which you can see in the Figure 5.20.
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Figure 5.20 Security point (0, 1); cooperative solution (7 —

Chih-Wen Chang @ NCKU

EXAM PLE 5 28 (cont’d)

Feasible Set with (0,1) security
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EXAM PLE 5 28 (cont’d)

* Figure 5.20 was created with the following Maple commands

> mypoints:=[[-1, -1], [-2, 2], [1, 1], [2, -2], [-1, -1]];
> constr:={0 <=x,-3*x-y<=4, x+3*y<=4, 3*xx+y<=4, -x-3*y<=4, 1<=y};
> z:=(x+0) *x(y-1);
> iplot2:=plots[inequal] (constr,x=-0.5..2, y=-0.5..2,

optionsfeasible=(color=white),

optionsclosed=(color=black, thickness=2),

optionsexcluded=(color=white),title="Feasible Set

with (0,1) security"):
> pol:=plots[polygonplot] (mypoints, color=yellow):
cp:=plots[contourplot] (z, x=-2..3,y=-2..3,
contours=40, axes=boxed,thickness=2):

> plots[display] (iplot2, pol,cp);

W
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EXAM PLE 5 28 (cont’d)

 The solution of the problem is given by the Maple commands:

> with(Optimization):
> NLPSolve(z,constr,maximize) ;

— We get from these commands that z=0.083, x=u=0.5,y=v=1.167.

Chih-Wen Chang @ NCKU Game Theory, Ch5 240



EXAM PLE 5 28 (cont’d)

— Next, to find the threat strategies we note that we have two
possibilities because we have two line segments in Figure 5.20 as the
Pareto-optimal boundary.

— We have to consider both m,, = r%, b = -i and m, = —3,b=4.

e Let’suse m, =-3,b=1

— We look for the value of the game with matrix 3 A - B:

. -2 2
sa-p=[ 2 3]

— wvalue(3A—B) =0
1

— The optimal threat strategies are X: = (3. 3) = Y
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EXAM PLE 5 28 (cont’d)

— Then the security threat points are
ut = X, AV, =0 and o' = X,BY,T =0.

This means that each player threatens to use (X,.Y;) and receive O
rather than cooperate and receive more.

— Now the maximization problem becomes

Maximize uv,

subject to (u,v) € S°,

1 4
St ={(u,v) |v < (—-g)u + T < —-3u+4,u>0,v>0}
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EXAM PLE 5 28 (cont’d)

— The solution of this problem is at the unique point (%, 7) = (1,1). You
can see in Figure 5.21 how the level curves have bent over to touch at
the vertex.



EXAMPLE 5.28 (conta)

Feasible Set with (0,0) security

na Lad

-
T T T A I Y |

<

[
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=2 -1 a 1 2 3

LI

Figure 5.21 Security point (0, 0): cooperative solution (z = 1,7 = 1).
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EXAM PLE 5 28 (cont’d)

« Let'slookat my=—3.b=

— The matrix is

— c'afuc(%f’l — B) = F%
— The security threat points are
u' = X;AY; =1 and o' = X, BY;! = 1.

This point is exactly the vertex of the feasible set.
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EXAM PLE 5 28 (cont’d)

— Now the maximization problem becomes

Maximize (u — 1)(v — 1),
subject to (u,v) € S°,
1 4
St = {(u,v)|v < (—i)u—i- 30 ¥ < -3u+4, u>1, v>1}.

— But this set has exactly one point, and it is (1,1), so we immediately
get the solution (= 1,7 = 1),
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EXAM PLE 5 28 (cont’d)

 What happens if we try to use the formulas (5.4.1) for the
threat problem?

— This question arises now because the contours of g are hitting the
feasible set right at the point of intersection of two lines.

— The two lines have the equations

3u+ 4 and Ly 2
(% — 1L + dll V= ——U —.
3773

— Let's calculate for both m, = —=3,b =4, 0orm, = —%,b — %



EXAMPLE 5.28 (conta)

— Form, = —3,b=4,u" = v' =0, we have

mpu' +v' b  —3(0)+(0)-4 2
2m,, B 2(—3) 3

~(myu' +v' + b) = %(-—3(0) +(0)+4)=2.

u =

bo| =

T =

The point (3, 2) is not in S* because (—3)(2) + 3 = % < 2. So we no longer
consider lh:s point. However, because the point (u', v') = ( 0) is inside the
cone region formed by the lines through (1, 1) with 5lopex and 3, we know

that the threat solution should be (1, 1).
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EXAM PLE 5 28 (cont’d)

— For my = —%,h %, ut = vt = 1,

 omput ot b —%(l) + (1) — % {

W = = ) .

2my, 2(—3%)
1,1

(mpu' + 0" +b) = S(=3(1) + (1) +

T — ):l.

[

DI |

This gives (uw = 1,7 = 1), which is the correct solution.
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EXAMPLE 5.29

e At the risk of undermining your confidence, this example will
show that the Nash bargaining solution can be totally
unrealistic, and in an important problem.

— Suppose that there is a person, Moe, who has owes money to two
creditors, Larry and Curly. He owes more than he can pay. Let's say
that he can pay at most $100 but he owes a total of $150 > $100
dollars, $90 to Curly and $60 to Larry. The question is how to divide
the $100 among the two creditors. We set this up as a bargaining
game and use Nash's method to solve it.



EXAM PLE 5 29 (cont’d)

— First, the feasible set is
S ={(u,v) | u<60,v<90,u+v < 100},
where u is the amount Larry gets, and v is the amount Curly will get.

— The objective function we want to maximize at first is g(u.v) = uv
because if Larry and Curly can't agree on the split, then we assume
that they each get nothing.

— For the solution, we want to maximize g(u, v) subject (v, v) € S, u >
0,v > 0. It is straightforward to show that the maximum occurs at

=71 =150, as shown in Figure 5.22.



EXAM PLE 5 29 (cont’d)

— In fact, if we take any safety point of the form «* = a = ¢v*. we would
get the exact same solution. This says that even though Moe owes
Curly $90 and Larry S60, they both get the same amount as a
settlement. That doesn't seem reasonable, and I'm sure Curly would
be very upset.

— Now let's modify the safety point to «* 60 and v* = —90, which is
still feasible and reflects the fact that the players actually lose the
amount owed in the worst case, that is, when they are left holding the
bag.



EXAM PLE 5 29 (cont’d)

— This case is illustrated in Figure 5.23. The solution is now obtained
from maximizing ¢(u.v) = (u + 60)(v + 90) subject to
(w.v) € S;u > —60,v > —90, and results in 7 = 60 and 7 = 40.

* This is ridiculous because it says that Larry should be paid off in full while Curly,
who is owed more, gets less than half of what he is owed.
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EXAMPLE 5.29 (conta)

Solution with (0.0} security Solution with security point=(-60,-90)
100 - —
AR
= \% ll‘a \e‘-i' ’V \ :
7 \ NN NN ™S
- xa ‘\ iy ta
7 1 "". Y i
N \\'u I--\___#.
v 50 \ \ e T
) - )
' N
25- [
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0 25 50 75 100

Figure 5.22  Moe pays both Curly and Larry $50 each Figure 5.23 Moe pays Larry $60 and pays Curly $40
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